

Multi-valvular heart disease: Risk stratification and Decision-making

Nina Ajmone Marsan, MD, PhD, FESC

Cardiology Department
Leiden University Medical Center,
The Netherlands

FACULTY DISCLOSURE

I disclose the following financial relationships:

Receiving grant/research support from Alnylam, Astra Zeneca, Edwards Lifescience, Pfizer, Novartis, Pie Medical

Paid speaker for GE Healthcare, Philips Utrasound, Abbott Vascular, Omron, Pfizer

2025 ESC/EACTS Guidelines for the management of valvular heart disease

Developed by the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Lack of evidence and therefore given LEVEL C (few B)

Put the focus to the HEART TEAM decision!

Decision-making based on STEPWISE approach!

STEP 1: is one of the valvular lesions severe?

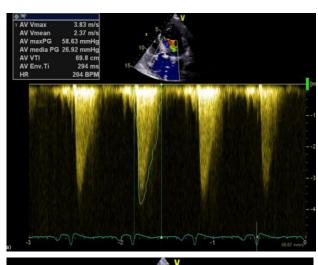
YES (by using the most appropriate diagnostic approaches)

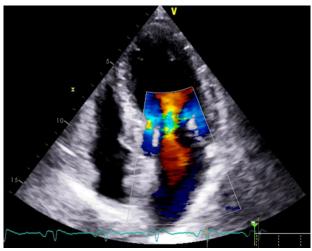
- DECIDE on indication for intervention based on the single VHD recommendations
 - Symptoms?
 - Cardiac damage?
 - If equivocal use additional tools such as exercise test of natriuretic peptides
- Assesses operative risk: candidate for surgery or transcatheter?

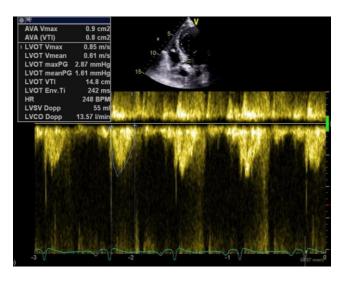
STEP 2: if there is indication for intervention for one severe VHD, should we treat the combined lesion?

Depends on severity: use all tools to assess true severity in this setting

Recommendation Table 11 — Recommendations for surgery of concomitant left-sided valvular heart disease^a


Recommendations	Class ^b	Level ^c
Concomitant aortic stenosis		
SAVR is recommended in patients with severe AS undergoing surgery for another valve.	T.	С
SAVR should be considered in patients with moderate AS ^d undergoing surgery for another valve.	lla	С
Concomitant aortic regurgitation		
AV surgery is recommended in patients with severe AR undergoing surgery for another valve.	1	С
Concomitant mitral regurgitation		
MV surgery is recommended in patients with severe MR undergoing surgery for another valve.	1	С


Surgery as one stop solution!


Case: severe AS and severe primary MR

BSA = 1.75

 $SV_i = 31 \text{ ml/m}^2$

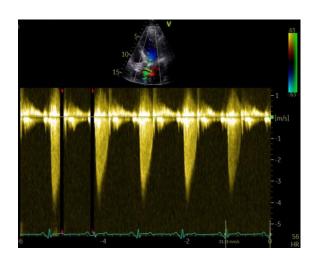
 $AVA = 0.8 \text{ cm}^2$

Case: severe AS and severe secondary MR

LVEF: 57%

LAVI: 40 ml/m2

AV:


max gradient 60 mmHg, mean gradient 35 mmHg


AVA 0.9 cm2

DVI 0.25

SVI 30 ml/m2

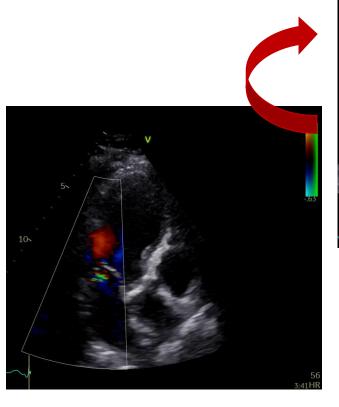
Case:

Severe AS + Left main stenosis (+multivessel disease) + moderate-severe secondary MR

Procedure Type: CABG + AVR		
PERIOPERATIVE OUTCOME	ESTIMATE %	
Operative Mortality	2.79%	
Morbidity & Mortality	10.6%	
Stroke	2.54%	
Renal Failure	1.66%	
Reoperation	4.28%	
Prolonged Ventilation	5.78%	
Deep Sternal Wound Infection	0.105%	
Long Hospital Stay (>14 days)	4.46%	
Short Hospital Stay (<6 days)*	31.3%	

Procedure Type: AV Replace + MV Repair + CABG		
PERIOPERATIVE OUTCOME ESTIMAT		
Operative Mortality	4.25%	
Morbidity & Mortality	15.6%	
Stroke	1.51%	
Renal Failure	5.15%	
Reoperation	5.31%	
Prolonged Ventilation	11.7%	
Deep Sternal Wound Infection	NA	
Long Hospital Stay (>14 days)	14.7%	
Short Hospital Stay (<6 days)*	14.9%	

STEP 2: if there is indication for intervention for one severe VHD, should we treat the combined lesion?


- Depends on severity: use all tools to assess true severity in this setting
- Depends on the aetiology (and anatomy)
- Depends on the operative risk

Transcatheter procedures have preferably a staged approach starting from the downstream valve (aortic, mitral, tricuspid) and a stepwise re-evaluation of the upstream valve after each treatment

Table 21. AS/MR Mixed Valve Disease

Severe AS	Severe MR	Surgical Risk	Procedure
SAVR candidate	Primary MR Repairable valve	Low intermediate	SAVR Surgical mitral valve repair
SAVR candidate	Primary MR Valve not repairable	Low intermediate	SAVR Surgical mitral valve replacement
TAVI candidate	Primary Repairable valve	High prohibitive	TAVI Mitral TEER*
SAVR candidate TAVI candidate	Secondary MR	Low intermediate	SAVR Surgical mitral valve repair/mitral valve replacement or TAVI Mitral TEER*
TAVI candidate	Secondary MR	High prohibitive	TAVI Mitral TEER*

AS and MR

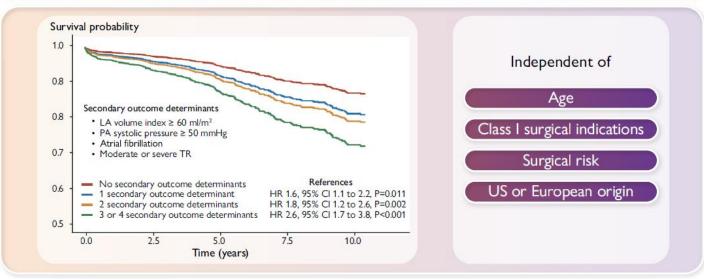
Identification of MR etiology and anatomical considerations

- LV either small (also LVOT) and hypertrophic
 OR dilated and with impaired function
- Left atrial dilatation / annulus dilatation/AF
- Annular (MAC) and leaflet calcifications
- Primary MR

MR and TR: prognostic value

Esc European Society of Cardiology European Heart Journal (2023) 44, 871–881 https://doi.org/10.1093/eurheartj/ehad004

CLINICAL RESEARCH


Valvular heart disease

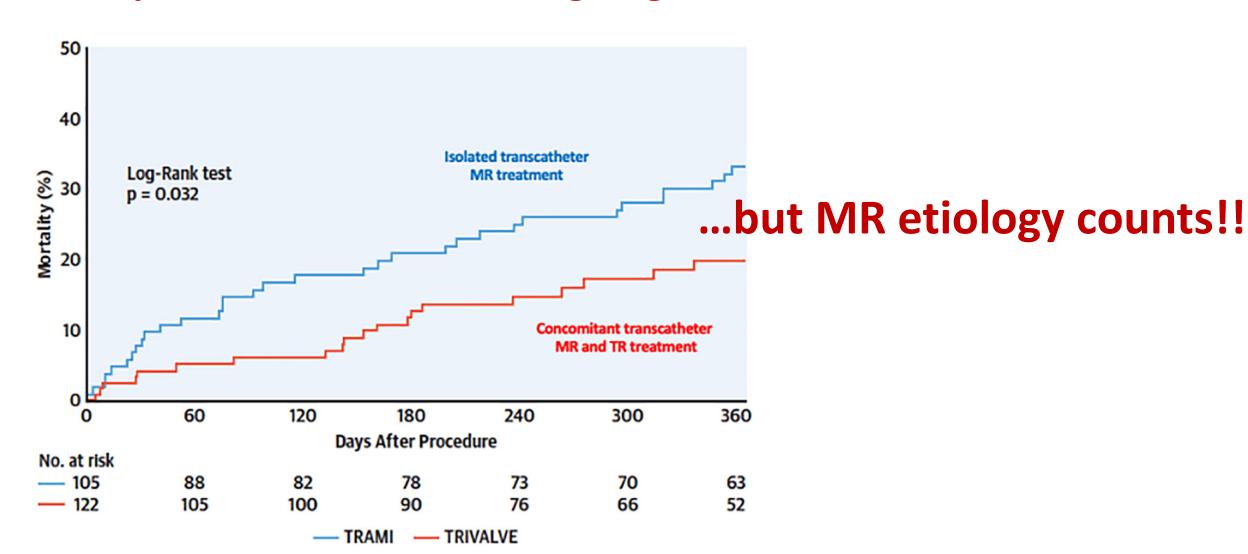
Factors influencing post-surgical survival in degenerative mitral regurgitation

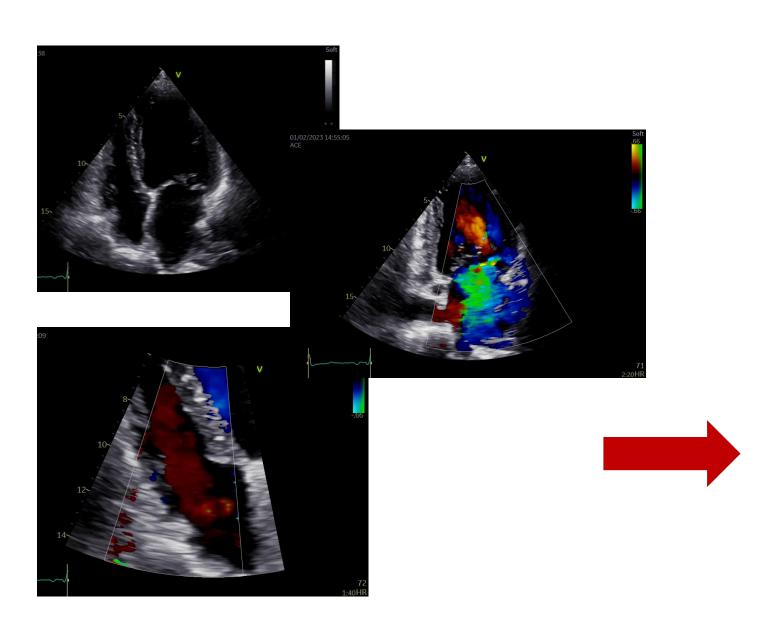
TR progression in 25% of the cases

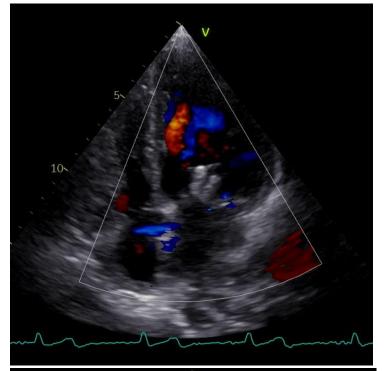
Excess mortality post mitral valve surgery

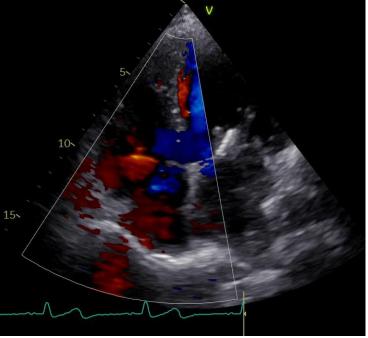
Recommendations on indications for intervention in tricuspid regurgitation

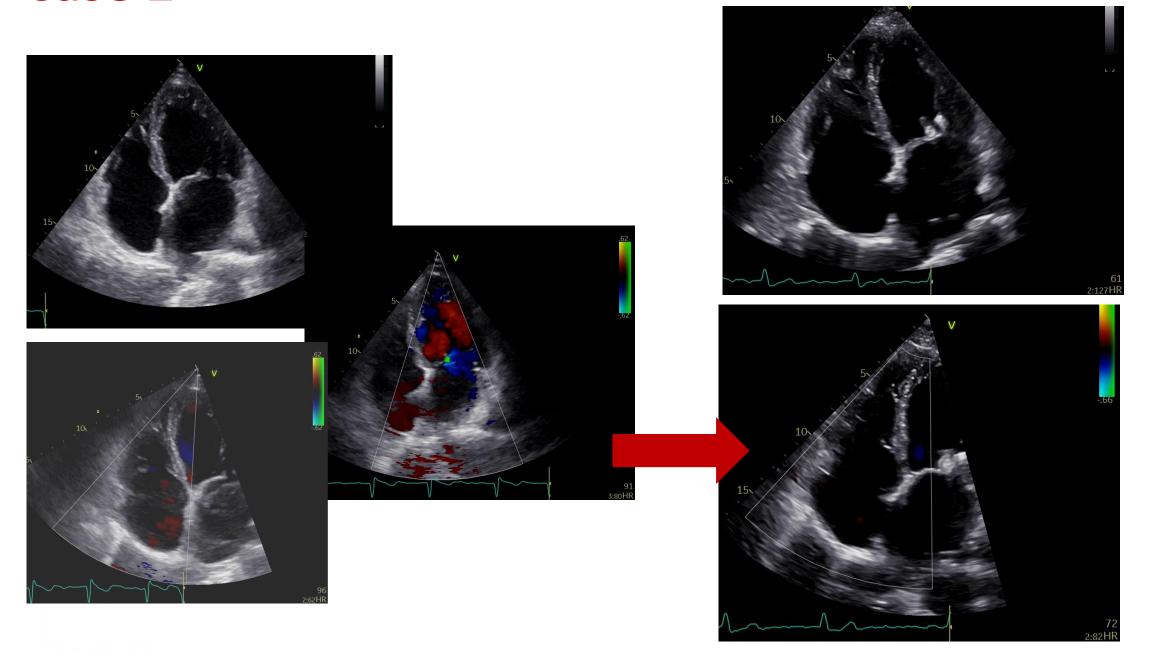
Recommendations	Class	Level
Patients with tricuspid regurgitation and left-sided valvular heart disease requiring surgery		
Concomitant TV surgery is recommended in patients with severe primary or secondary TR.	ı	В
Concomitant TV repair should be considered in patients with moderate primary or secondary TR, to avoid progression of TR and RV remodelling.	lla	В
Concomitant TV repair may be considered in selected patients with mild secondary TR and tricuspid annulus dilatation (≥40 mm or >21 mm/m²), to avoid progression of TR and RV remodelling.	IIb	В

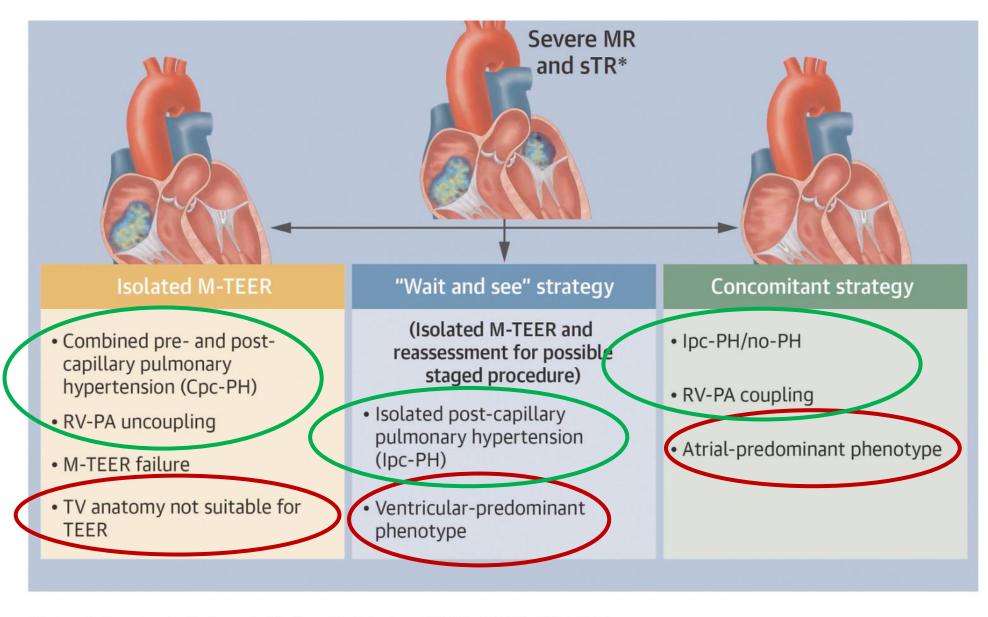

Patients with TR and left-sided valvular heart disease requiring surgery


Table S5 Factors to be considered during Heart Team discussion regarding concomitant tricuspid valve surgery in patients undergoing left-sided valve sur


Factors favouring concomitant TV surgery	Factors not favouring concomitant TV surgery
TR moderate or more	TR mild
Tricuspid annular dilatation	No tricuspid annular dilatation
Chronic AF	First-degree atrioventricular block, pre-existing left bundle branch block
Significant RA dilatation	Normal RA dimension
RV dilatation or (non-severe) dysfunction	Normal RV function and diameter
Presence of (non-severe) TV leaflet tethering	Absence of TV leaflet tethering
Pulmonary hypertension SPAP ≥50 mmHg	Normal pulmonary pressures
Reversible renal and liver dysfunction	No other comorbidities

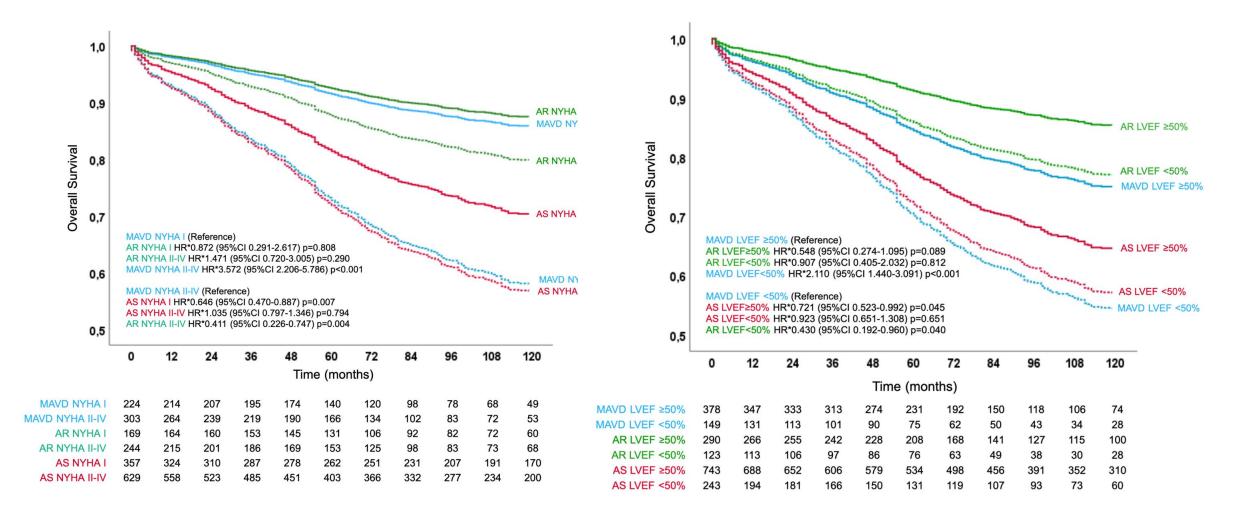

TR in patients with MR undergoing TEER


Case 1



Case 2

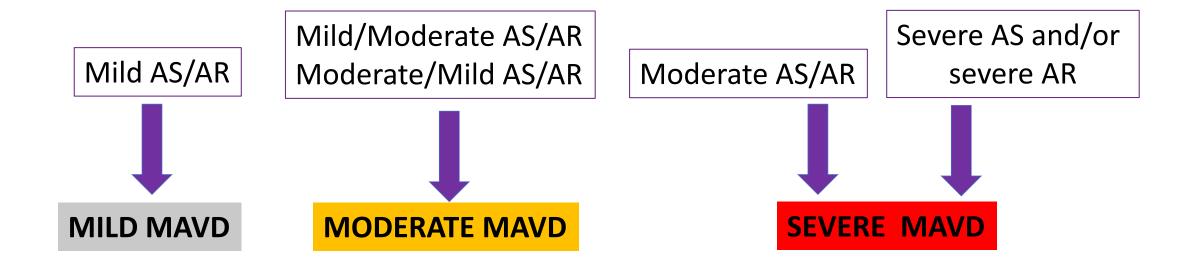
ECHO


Sisinni A, et al. J Am Coll Cardiol Intv. 2023;16(2):127-139.

STEP 3: both concomitant VHD are moderate

- Be sure they are both MODERATE using MMI tools
- Typical for Mixed aortic or mixed mitral valve disease; no evidence for others combination of VHD

Recommendation Table 12 — Recommendations on indications for intervention in patients with mixed moderate aortic stenosis and moderate aortic regurgitation (see also Supplementary data online, Evidence Table 24)


Recommendations	Class ^a	Level ^b
Intervention is recommended in symptomatic patients with mixed moderate AV stenosis ^c and moderate regurgitation, and a mean gradient \geq 40 mmHg or $V_{max} \geq$ 4.0 m/s. ^{790–793}	I	В
Intervention is recommended in asymptomatic patients with mixed moderate AV stenosis ^c and moderate regurgitation with $V_{max} \ge 4.0$ m/s, and LVEF <50% not attributable to other cardiac disease. ⁷⁹¹	ı	С

True Moderate Mixed Aortic Valve disease

Lopez Santi et al, Eur Heart J 2025 in press

ACCORDING TO AS AND AR EVALUATION, DEFINE AND GRADE MAVD

Prognosis modifiers: NYHA class, LVEF, age, more severe AS and/or AR at baseline, larger LV mass index, more pronounced LV concentric remodelling and advanced LV diastolic dysfunction.

Conclusions

- MVD is common and is associated with more unfavourable cardiac remodelling and worse prognosis as compared to single VHD.
- Management of these patients is very challenging from diagnosis, riskstratification and therapeutic decision making and the scientific evidence for MVD remains limited.

Specific expertise is crucial and the final decision is up to the Heart Team!