

Isolated TR: when and how should we intervene?

Matteo Pettinari, MD, PhD
Department of thoracic and cardiovascular surgery
Université catholique de Louvain

Tricuspid regurgitation is a public health crisis

Maurice Enriquez-Sarano *, David Messika-Zeitoun, Yan Topilsky, Christophe Tribouilloy, Giovanni Benfari, Hector Michelena

Cardiovascular Department, University of Ottawa, Canada Cardiovascular Department, University of Tel-Aviv, Israel Cardiovascular Department, University of Amiens, France

- Isolated tricuspid regurgitation =
 - TR without left sided valve disease,
 - without LV dysfunction
 - without pulmonary hypertension

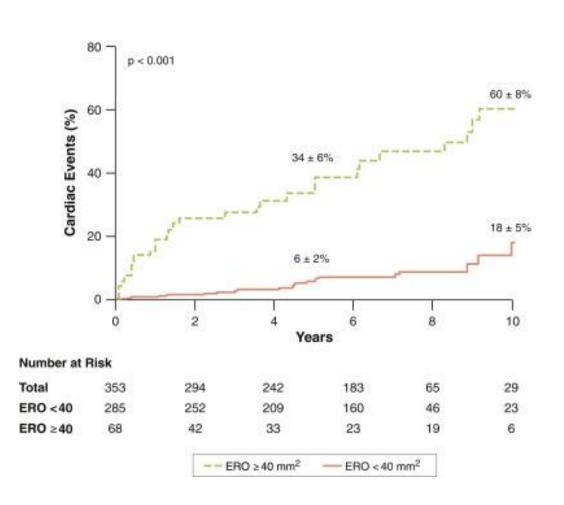
TR unrecognized and untreated disease?

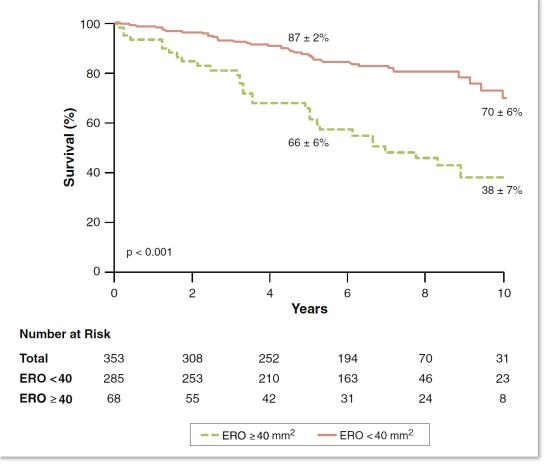
- ➤ US prevalence of 1.6 million patients with prevalent moderate severe TR vs. the 8 to 10,000 tricuspid surgeries performed yearly. Considering the incident cases estimated in the nation no more than 4 to 5% of incident cases are ever operated.
- In the small subset of flail tricuspid leaflets, around 50% of cases underwent tricuspid surgery.

Messika-Zeitoun D, J Thorac Cardiovasc Surg 2004;128: 296-302.

In the context of isolated TR, despite the absence of LV dysfunction, left-sided valve disease or PH, only 8% ever get tricuspid surgery performed.28

Topilsky Y, J Am Coll Cardiol Img 2014;7:1185-1194...




Clinical Outcome of Isolated Tricuspid Regurgitation

Yan Topilsky, MD,* Vuyisile T. Nkomo, MD,† Ori Vatury, MD,† Hector I. Michelena, MD,† Thierry Letourneau, MD,† Rakesh M. Suri, MD, DPHIL,‡ Sorin Pislaru, MD,† Soon Park, MD,‡ Douglas W. Mahoney, MSc,§ Simon Biner, MD,* Maurice Enriquez-Sarano, MD†

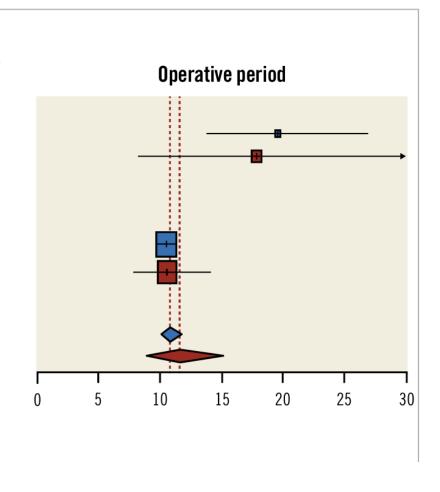
Outcomes of isolated tricuspid valve replacement: a systematic review and meta-analysis of 5,316 patients from 35 studies

Andrea Scotti^{1,2}, MD; Matteo Sturla¹, MD; Juan F. Granada^{1,2}, MD; Susheel K. Kodali³, MD; Augustin Coisne^{1,2}, MD, PhD; Antonio Mangieri⁴, MD; Cosmo Godino⁵, MD; Edwin Ho¹, MD; Ythan Goldberg¹, MD; Mei Chau¹, MD; Ulrich P. Jorde¹, MD; Mario J. Garcia¹, MD; Francesco Maisano⁵, MD; Vinayak N. Bapat⁶, MD; Gorav Ailawadi⁷, MD, MBA; Azeem Latib^{1*}, MD

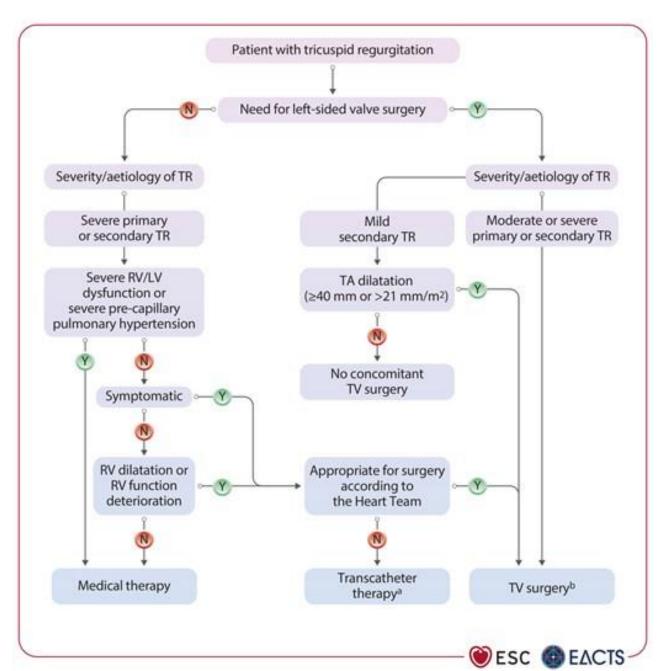
Outcome	Proportion/incidence rate % (95% CI)	l² % (X² p-value)	N. of studies
Early outcomes			
Bleeding	12 (8-17)	83 (<0.01)	17
Acute kidney injury	15 (9-24)	89 (<0.01)	11
Renal replacement therapy	7 (3-15)	63 (0.01)	7
Pacemaker implantation	10 (6-16)	75 (<0.01)	13
Respiratory complication	15 (12-20)	0 (0.56)	7
Stroke	2 (1-4)	74 (<0.01)	9
Wound infection	3 (2-6)	81 (<0.01)	10

Outcomes of isolated tricuspid valve replacement: a systematic review and meta-analysis of 5,316 patients from 35 studies

Andrea Scotti^{1,2}, MD; Matteo Sturla¹, MD; Juan F. Granada^{1,2}, MD; Susheel K. Kodali³, MD; Augustin Coisne^{1,2}, MD, PhD; Antonio Mangieri⁴, MD; Cosmo Godino⁵, MD; Edwin Ho¹, MD;


Outcome	Proportion/incidence rate % (95% CI)	l² % (<i>X</i> ² <i>p</i> -value)	N. of studies		
Late outcomes					
Late mortality*	6 (4-9)	96 (<0.01)	23		
Reintervention*	2 (1-3)	64 (<0.01)	15		
Structural valve deterioration*	3 (1-6)	82 (<0.01)	9		
Valve thrombosis*	1 (0-2)	49 (0.07)	8		
Recurrence of TR ≥2*	5 (2-13)	85 (<0.01)	4		
Bioprostheses					
Late mortality*	6 (2-13)	97 (<0.01)	8		
Reintervention*	1 (1-3)	77 (<0.01)	5		
Structural valve deterioration*	3 (1-9)	91 (<0.01)	4		
Valve thrombosis*	0 (0-1)	68 (0.04)	3		
Recurrence of TR ≥2*	8 (5-13)	33 (0.22)	3		
*per 100 person-years. CI: confidence interval; TR: tricuspid regurgitation					

Outcomes of isolated tricuspid valve replacement: a systematic review and meta-analysis of 5,316 patients from 35 studies



Andrea Scotti^{1,2}, MD; Matteo Sturla¹, MD; Juan F. Granada^{1,2}, MD; Susheel K. Kodali³, MD; Augustin Coisne^{1,2}, MD, PhD; Antonio Mangieri⁴, MD; Cosmo Godino⁵, MD; Edwin Ho¹, MD; Ythan Goldberg¹, MD; Mei Chau¹, MD; Ulrich P. Jorde¹, MD; Mario J. Garcia¹, MD; Francesco Maisano⁵, MD; Vinayak N. Bapat⁶, MD; Gorav Ailawadi⁷, MD, MBA; Azeem Latib^{1*}, MD

Study	Events [95% CI]	Weight (random)	Weight (common)
Before 1995			
Common effect model	19.5 [13.8-26.9]	_	4.8%
Random effects model	17.8 [8.2-34.5]	18.9%	4.076 —
$l^2=60\%$, $\tau^2=0.5577$, $\chi_6^2=15.02$		10.070	
After 1995			
Common effect model	10.5 [9.6-11.4]	_	95.2%
Random effects model	10.5 [7.8-14.1]	81.1%	_
I^2 =68%, τ^2 =0.4424, χ^2_{25} =77.6	68 (<i>p</i> <0.001)		
Common effect model	10.8 [10.0-11.7]	_	100.0%
Random effects model	11.6 [8.8-15.2]	100.0%	_
$l^2=69\%$, $\tau^2=0.4885$, $\chi^2_{32}=103$.94 (<i>p</i> <0.001)		
02	(fixed effect): $\chi_1^2 = 11.24$, df=1 (<i>p</i> <0.001)	
	(random effects): $\chi_1^2 = 2.36$, df=		
.	. , •1	•	

ESC 2025 Guidelines

ESC 2025 Guidelines

Patients with severe tricuspid regurgitation w valvular heart disease requiring surgery	ithout le	ft-sided
TV surgery ^c is recommended in symptomatic patients with severe primary TR without severe RV dysfunction or severe PH.	ı	с
TV surgery ^c should be considered in asymptomatic patients with severe primary TR who have RV dilatation/RV function deterioration, but without severe LV/RV dysfunction or severe PH.	lla	с
TV surgery ^c should be considered in patients with severe secondary TR who are symptomatic or have RV dilatation/RV function deterioration, but without severe LV/RV dysfunction or PH. ^{685,720,745–747}	lla	В
Transcatheter TV treatment should be considered to improve quality of life and RV remodelling in high-risk patients with symptomatic severe TR despite optimal medical therapy in the absence of severe RV dysfunction or pre-capillary PH. ^{713,733,735,738,748–751}	lla	A

LV, left ventricle/left ventricular; PH, pulmonary hypertension; RV, right ventricle/right ventricular; TR, tricuspid regurgitation; TV, tricuspid valve.

^aClass of recommendation.

bLevel of evidence.

^cValve repair whenever possible.

Determinants of clinical outcomes of surgery for isolated severe tricuspid regurgitation

Sung Jun Park , ¹ Jin Kyung Oh , ² Seon-Ok Kim, ³ Seung-Ah Lee, ⁴ Ho Jin Kim, ¹ Sahmin Lee, ⁴ Sung Ho Jung, ¹ Jong-Min Song, ⁴ Suk Jung Choo, ¹ Duk-Hyun Kang, ⁴ Cheol Hyun Chung, ¹ Jae-Kwan Song , ⁴ Jae Won Lee , ¹ Dae-Hee Kim , ⁴ Joon Bum Kim¹

 Table 3
 Univariable and multivariable analyses for the primary outcome

	Univariable			Multivariable		<u> </u>
	HR	95% CI	P value	HR	95% CI	P value
Age	1.05	1.03 to 1.08	<0.001	1.05	1.02 to 1.08	0.001
NYHA class 3–4	1.79	1.06 to 3.04	0.031			
Coronary artery disease	2.16	1.08 to 4.33	0.029			
Haemoglobin	0.75	0.67 to 0.84	< 0.001	0.83	0.73 to 0.94	0.003
Platelet count	0.99	0.986 to 0.996	< 0.001			
Estimated glomerular filtration rate	0.98	0.97 to 0.99	0.002			
Total bilirubin	1.58	1.02 to 2.33	0.022	1.50	1.02-2.20	0.040
Albumin	0.49	0.32 to 0.76	0.001			
Tricuspid regurgitant jet area	1.05	1.03 to 1.08	< 0.001	1.03	1.01 to 1.06	0.005
Tricuspid annular diameter	1.06	1.01 to 1.10	0.014			
Right atrial pressure	1.23	1.09 to 1.39	< 0.001	1.14	1.02 to 1.28	0.022
Fractional area change	0.95	0.92 to 0.99	0.015			

NYHA. New York Heart Association.

Determinants of clinical outcomes of surgery for isolated severe tricuspid regurgitation

Sung Jun Park , ¹ Jin Kyung Oh , ² Seon-Ok Kim, ³ Seung-Ah Lee, ⁴ Ho Jin Kim, ¹ Sahmin Lee, ⁴ Sung Ho Jung, ¹ Jong-Min Song, ⁴ Suk Jung Choo, ¹ Duk-Hyun Kang, ⁴ Cheol Hyun Chung, ¹ Jae-Kwan Song , ⁴ Jae Won Lee , ¹ Dae-Hee Kim , ⁴ Joon Bum Kim¹

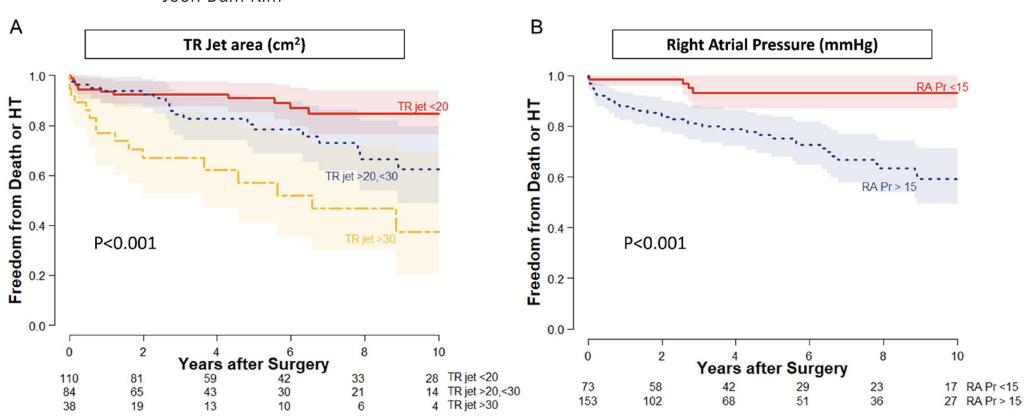
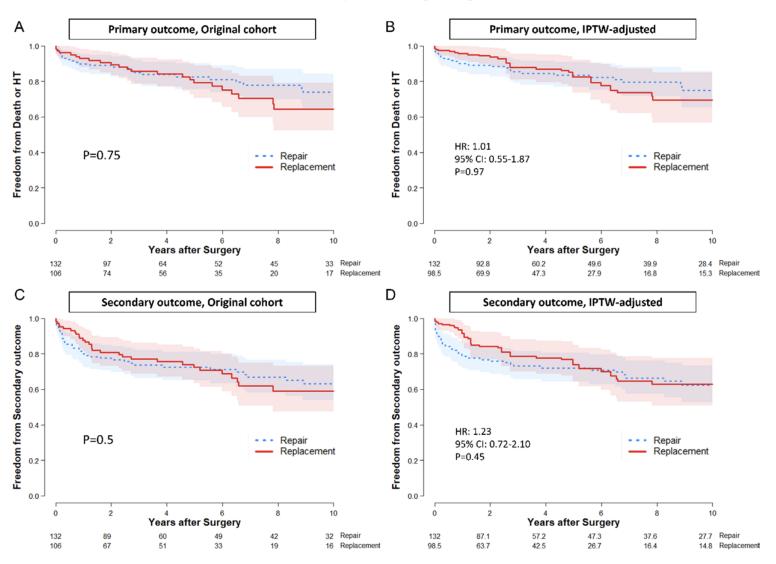



Figure 2 The primary outcomes stratified by (A) tricuspid regurgitant (TR) jet area and (B) right atrial (RA) pressure.

Park SJ, et al. Heart 2021; **107**:403–410. doi:10.1136/heartjnl-2020-317715

Determinants of clinical outcomes of surgery for isolated severe tricuspid regurgitation

Figure 3 Repair versus replacement. (A) The primary outcome in the original cohort and (B) the IPTW-adjusted cohort. (C) The secondary outcome in the original cohort and (D) the IPTW-adjusted cohort. IPTW, inverse probability of treatment weighting.

Risk stratification model

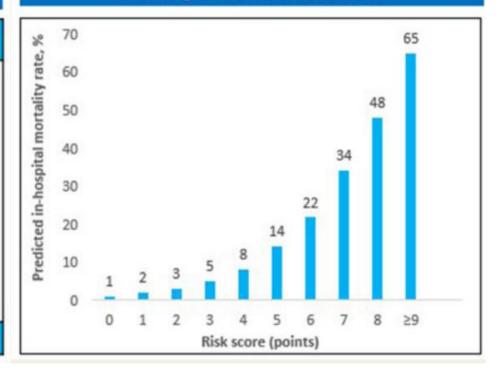
TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery

- Consecutive adult patients who underwent ITVS for severe non-congenital TR at 12 French centres between 2007 and 2017
- 466 patients (60 ± 16 years, 49% female, functional TR in 49%).
- Inhospital mortality rate was 10%.
- Scoring system to predict in-hospital mortality using multivariable logistic regression and bootstrapping

TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery

Risk factors and scoring system for in-hospital mortality after isolated tricuspid valve surgery

Risk factors (final model from multivariate analysis)	Scoring
Age ≥ 70 years	1
NYHA functional class III-IV	1
Right-sided heart failure signs	2
Daily dose of furosemide ≥ 125mg	2
Glomerular filtration rate < 30 ml/min	2
Elevated total bilirubin	2
Left ventricular ejection fraction < 60%	1
Moderate/severe right ventricular dysfunction	1
Total	12

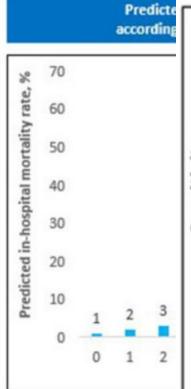


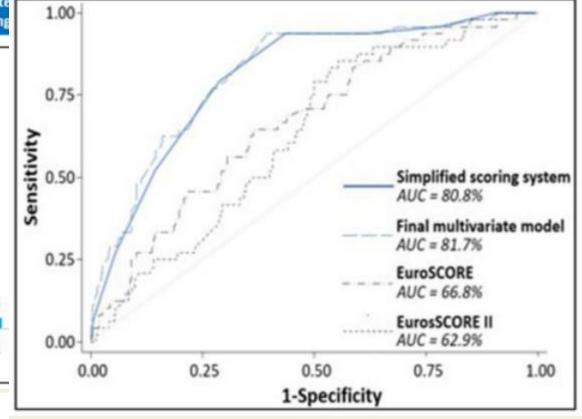
TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery

Risk factors and scoring system for in-hospital mortality after isolated tricuspid valve surgery

Risk factors (final model from multivariate analysis)	Scoring
Age ≥ 70 years	1
NYHA functional class III-IV	1
Right-sided heart failure signs	2
Daily dose of furosemide ≥ 125mg	2
Glomerular filtration rate < 30 ml/min	2
Elevated total bilirubin	2
Left ventricular ejection fraction < 60%	1
Moderate/severe right ventricular dysfunction	1
Total	12

Predicted in-hospital mortality rate according to the final risk score model




TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery

	The second second		And the second second	
Rece	iver operat	ing chara		CHIPURE
mere	rver operat	ung cnara	CCCIISCI	CUITCS

Risk factors and scoring system	
for in-hospital mortality after isolated tricuspid valve surgery	

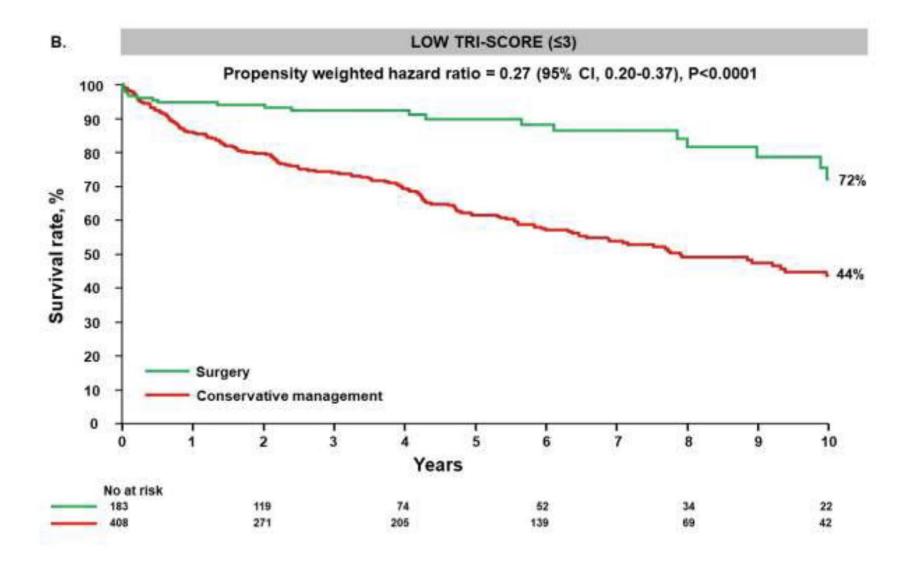
Risk factors (final model from multivariate analysis)	Scoring
Age ≥ 70 years	1
NYHA functional class III-IV	1
Right-sided heart failure signs	2
Daily dose of furosemide ≥ 125mg	2
Glomerular filtration rate < 30 ml/min	2
Elevated total bilirubin	2
Left ventricular ejection fraction < 60%	1
Moderate/severe right ventricular dysfunction	1
Total	12

European Heart Journal (2024) 45, 4512-4522 https://doi.org/10.1093/eurheartj/ehae578

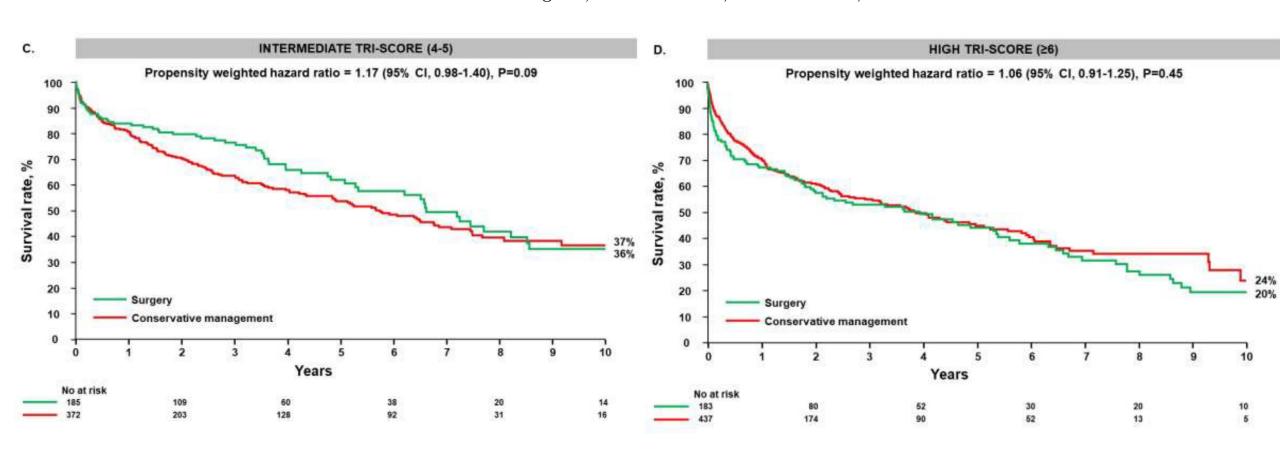
Benefit of isolated surgical valve repair or replacement for functional tricuspid regurgitation and long-term outcomes stratified by the TRI-SCORE

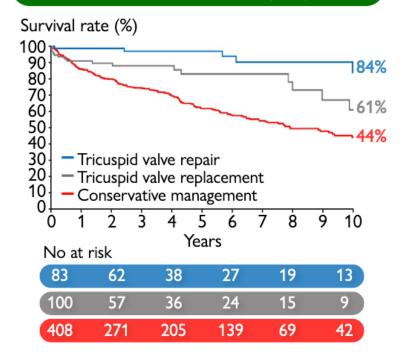
Julien Dreyfus (1) 1*, Fernando Juarez-Casso², Alessandra Sala³,

TRIGISTRY: multicenter registry

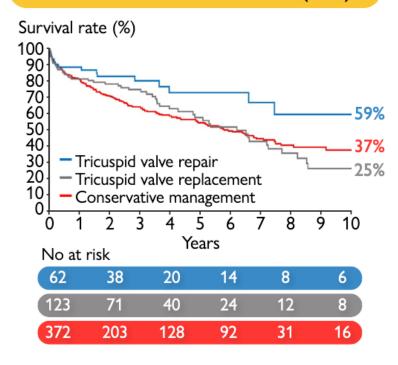


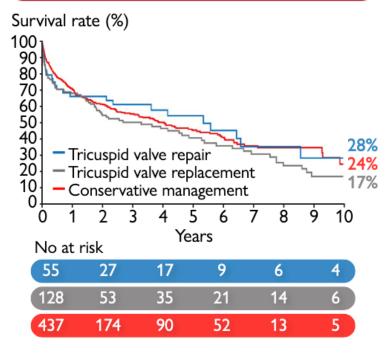
1768 patients with severe isolated functional tricuspid regurgitation


Comparison of 10-year survival rates between treatment modalities according to the TRI-SCORE category (low, intermediate and high)



Benefit of isolated surgical valve repair or replacement for functional tricuspid regurgitation and long-term outcomes stratified by the TRI-SCORE


Julien Dreyfus, Fernando Juarez-Casso, Alessandra Sala, Manuel Carnero-Alcazar, Andrea Eixerés-Esteve, Yohann Bohbot, Baptiste Bazire, Michele Flagiello, Elisabeth Riant, Yannick Mbaki, et al.


Low TRI-SCORE (≤ 3)

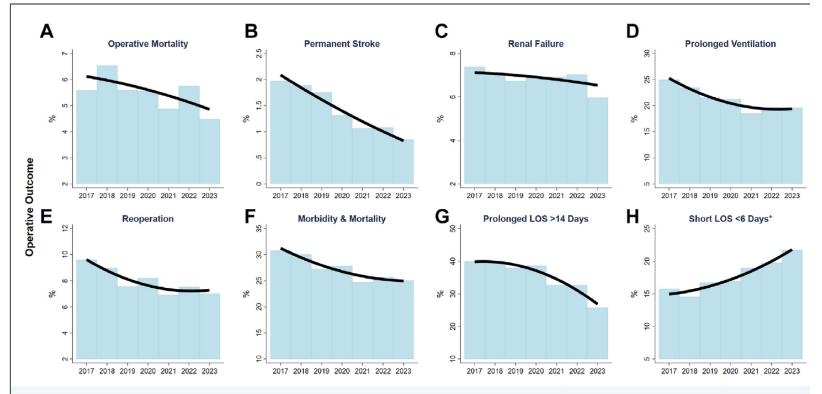
Intermediate TRI-SCORE (4–5)

High TRI-SCORE (≥ 6)

Propensity weighted hazard ratio

	Low TRI-SCORE (≤ 3)	Intermediate TRI-SCORE (4–5)	High TRI-SCORE (≥ 6)
Repair vs conservative management	0.11 (95% CI, 0.06-0.19), P < 0.0001	0.49 (95% CI, 0.35-0.68), P < 0.0001	0.86 (95% CI, 0.68–1.08), P = 0.20
Replacement vs conservative management	0.65 (95% CI, 0.47-0.90), P = 0.009	1.43 (95% CI, 1.18–1.72), P = 0.0002	1.58 (95% CI, 1.35–1.86), P < 0.0001
Repair vs replacement	0.17 (95% CI, 0.09-0.32), P < 0.0001	0.34 (95% CI, 0.24–0.48), P < 0.0001	0.54 (95% CI, 0.43-0.68), P < 0.0001

Outcomes of Isolated Tricuspid Valve Surgery: A Society of Thoracic Surgeons Analysis and Risk Model



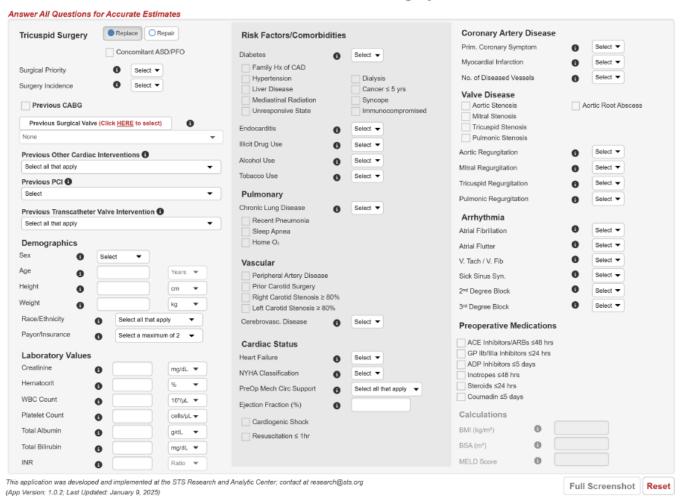
Vinod H. Thourani, MD,¹ Levi Bonnell, PhD,² Moritz C. Wyler von Ballmoos, MD, PhD,³ J. Hunter Mehaffey, MD,⁴ Michael Bowdish, MD,⁵ Paul Kurlansky, MD,⁶ Jeffrey P. Jacobs, MD,⁷ Sean O'Brien, PhD,⁸ David M. Shahian, MD,⁹ and Vinay Badhwar, MD⁴

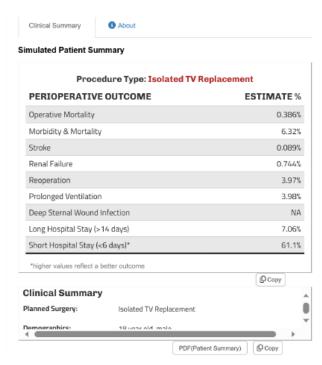
TABLE 2 Observed Outcomes by Procedure Type in Isolated Tricuspic	1
Valve Surgery Study Group	

		N (%)	
	TVRr	TVr	TVR
Outcome	N=13,587	n = 5583	n = 8004
Operative mortality	760 (5.6)	304 (5.4)	456 (5.7)
Stroke	197 (1.4)	116 (2.1)	81 (1.0)
Renal failure	928 (6.8)	400 (7.2)	528 (6.6)
Prolonged ventilation	2884 (21.2)	1299 (23.3)	1585 (19.8)
Reoperation	1083 (8.0)	484 (8.7)	599 (7.5)
Morbidity and mortality	3717 (27.4)	1576 (28.2)	2141 (26.7)
DSWI ^a	79 (0.6)	30 (0.5)	49 (0.6)
Prolonged LOS >14 d	4908 (36.1)	1978 (35.4)	2930 (36.6)
Short LOS <6 d	2368 (17.4)	1223 (21.9)	1145 (14.3)

^aRisk models not created because of low event counts. DSWI, deep sternal wound infection; LOS, length of stay; TVr, tricuspid valve repair; TVR, tricuspid valve replacement; TVRr, tricuspid valve replacement or repair.

FIGURE 2 Observed outcome over the study period for each of the 8 outcomes: (A) operative mortality, (B) permanent stroke, (C) renal failure, (D) prolonged ventilation, (E) reoperation, (F) morbidity and mortality, (G) prolonged length of stay (LOS) >14 days, and (H) short LOS <6 days.

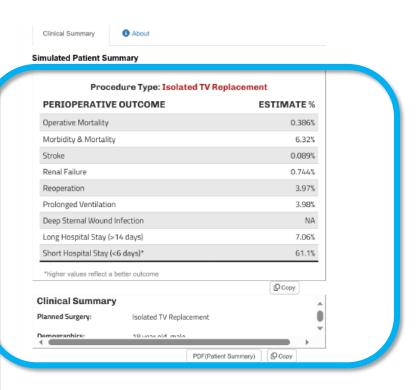



• STS tricuspid score

Risk Calculator - Isolated Tricuspid Valve Surgery

STS - Adult Cardiac Surgery Database

• STS tricuspid score


This application was developed and implemented at the STS Research and Analytic Center; contact at research@sts.org

(App Version: 1.0.2; Last Updated: January 9, 2025)

The Society

wer All Question	-					0 A. F	
Tricuspid Surgery Repair		Risk Factors/Comorbidities	Risk Factors/Comorbidities		Coronary Artery Disease		
		Concomitant A	ASD/PFO	Diabetes	Select ▼	Prim. Coronary Symptom	B Select ▼
Surgical Priority		Select ▼		Family Hx of CAD		Myocardial Infarction	Select ▼
		-		Hypertension	Dialysis	No. of Diseased Vessels	Select ▼
Surgery Incidence		B Select ▼		Liver Disease	Cancer ≤ 5 yrs	Valve Disease	
Previous CABG				Mediastinal Radiation	Syncope	Aortic Stenosis	Aortic Root Abscess
				Unresponsive State	Immunocompromised	Mitral Stenosis	_
Previous Surgical	valve (Cli	CK <u>HERE</u> to selec		Endocarditis 0	Select ▼	Tricuspid Stenosis	
None			*	Illicit Drug Use	Select ▼	Pulmonic Stenosis	
Previous Other Car	diac Inte	erventions 13		Alcohol Use	Select ▼	Aortic Regurgitation	3 Select ▼
Select all that apply ▼			•	•		Mitral Regurgitation	Select ▼
Previous PCI 1				Tobacco Use 6	Select ▼	Tricuspid Regurgitation	Belect ▼
Select			•	Pulmonary		Pulmonic Regurgitation	B Select ▼
Previous Transcath	eter Val	ve Intervention (D	Chronic Lung Disease	Select ▼		
Select all that apply			-	Recent Pneumonia		Arrhythmia	•
				Sleep Apnea		Atrial Fibrillation	Select ▼
Demographics				Home O ₁		Atrial Flutter	Select ▼
Sex 6	Sel	lect •		Vascular		V. Tach / V. Fib	3 Select ▼
ige 📵)		Years -	Peripheral Artery Disease		Sick Sinus Syn.	Select ▼
leight 6)		cm 🔻	Prior Carotid Surgery		2 nd Degree Block	Select ▼
Veight 6			kg 🔻	Right Carotid Stenosis ≥ 80% Left Carotid Stenosis ≥ 80%		3rd Degree Block	Select ▼
Race/Ethnicity	0	Select all that a	apply 🔻	Cerebrovasc. Disease	Select ▼	Preoperative Medications	
Payor/Insurance	0	Select a maxin	num of 2 🔻	· ·			
				Cardiac Status		ACE Inhibitors/ARBs ≤48 hrs GP Ilb/Illa Inhibitors ≤24 hrs	
Laboratory Valu Creatinine				Heart Failure 6	Select ▼	ADP Inhibitors ≤5 days	
	0		mg/dL. ▼	NYHA Classification 6	Select ▼	Inotropes ≤48 hrs	
Hematocrit	0		% •	PreOp Mech Circ Support	Select all that apply ▼	Steroids ≤24 hrs	
WBC Count	0		10³/µL ▼	Ejection Fraction (%)		Coumadin ≤5 days	
Platelet Count	0		cells/µL ▼			Calculations	
Total Albumin	0		g/dL 🔻	Cardiogenic Shock		BMI (kg/m²)	
	0		3.00	Resuscitation ≤ 1hr		BSA (m²)	

Rick Calculator - Isolated Tricuspid Valve Surgery

Full Screenshot Reset

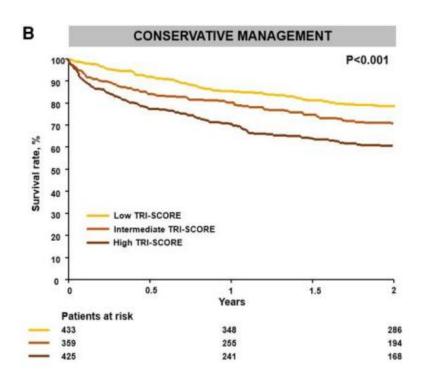
Conclusion

- More attention needed to diagnosing moderate and severe TR, with use of quantitative Doppler echocardiographic methods.
- Early consideration of tricuspid surgery before the occurrence of severe HF.
- Mandatory multidisciplinary Heart Team discussion.
- Risk analysis to optimize patients and procedure selection
- Need to test efficacy of therapies in appropriately designed randomized clinical trials.
 - Transchateter vs Medical Therapy
 - Minimally invasive surgery vs Transchatter therapy
 - Repair vs Replacement

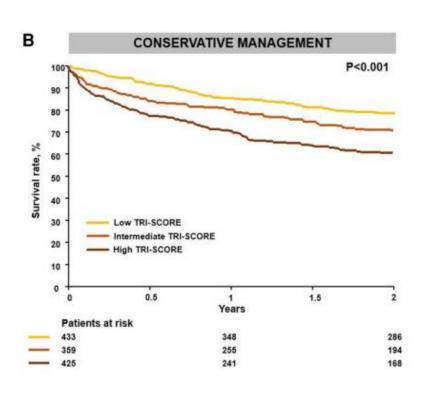
Thank you

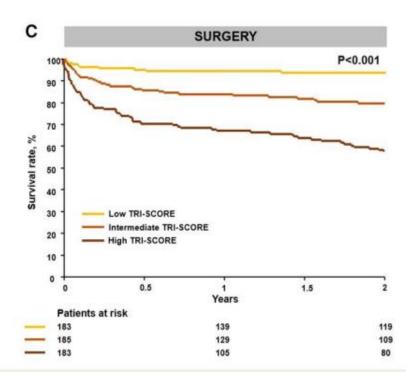
TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation

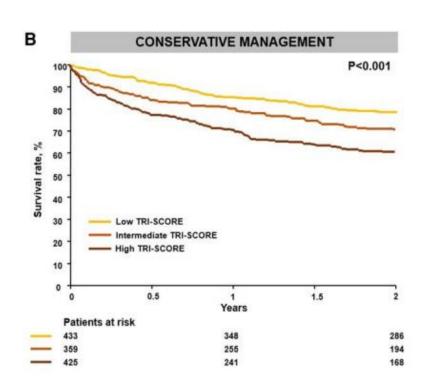
TRIGISTRY: multicenter registry (33 centers, 10 countries)

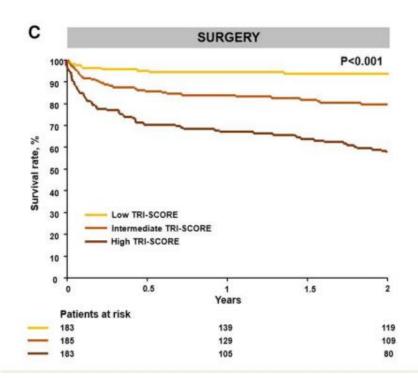

2413 patients with severe isolated functional tricuspid regurgitation

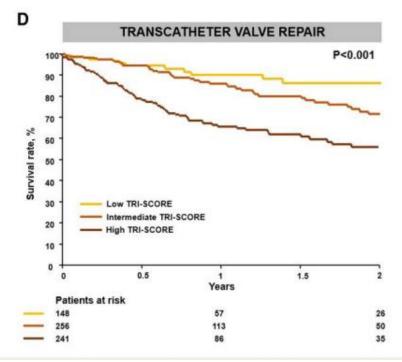
Comparison of survival rates at 2 years between different treatment modalities according to TRI-SCORE categories (low, intermediate and high)




TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation


TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation





TRI-SCORE and benefit of intervention in patients with severe tricuspid regurgitation

