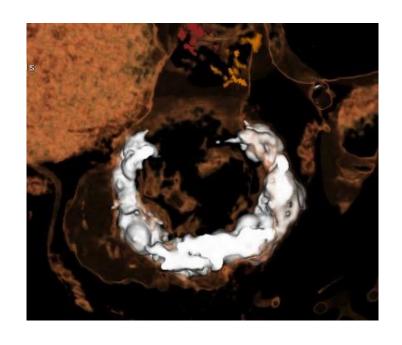


Mitral valve calcification: transcatheter options


Dr. Alison Duncan

MB BS BSc PhD FRCP FESC

The Royal Brompton Hospital

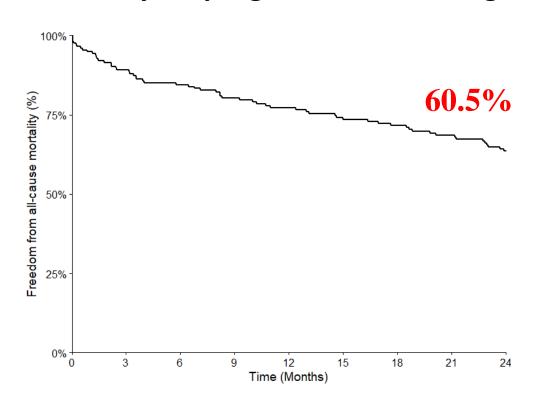
Part of Guys and St Thomas' NHS Foundation Trust

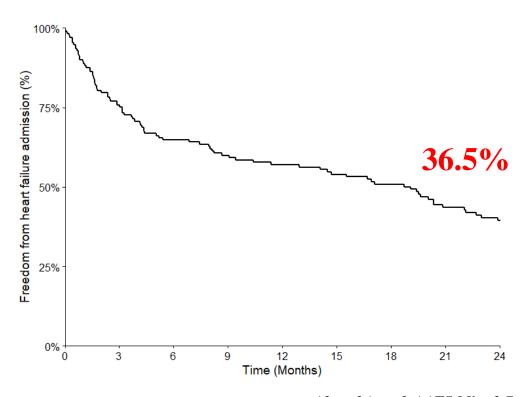
alison.duncan14@nhs.net

Conflict of Interests

I have received honoraria and consultancy fees from

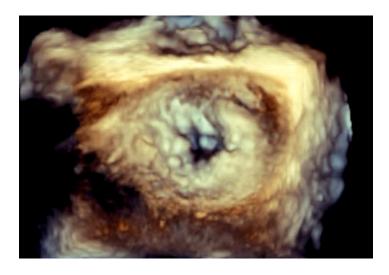
- Abbott Laboratories
- Edwards LifeSciences
- Medtronic



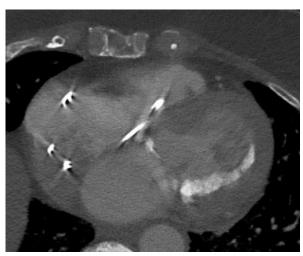

- Calcific degenerative process
- 10% of the population, 40% in septuagenarians

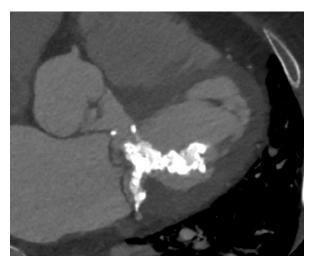
Poor 2-year prognosis in MAC / significant MR when left untreated

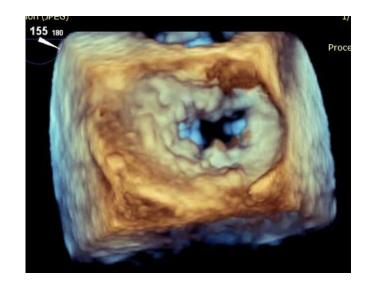
Ahmed A et al. AATS Mitral Conclave

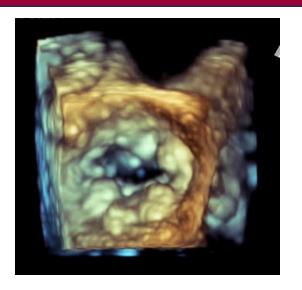

Framingham 16-year follow-up:

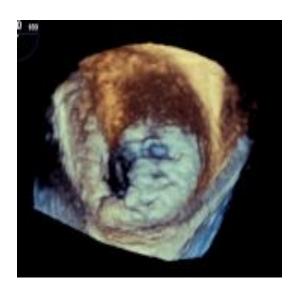

every 1mm \(\gamma\) increase in MAC = 10% \(\gamma\) risk for CV disease (HT, CAD, PVD, CV mortality, and all-cause mortality)

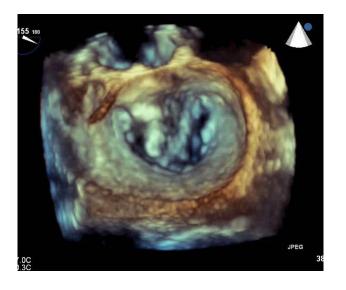


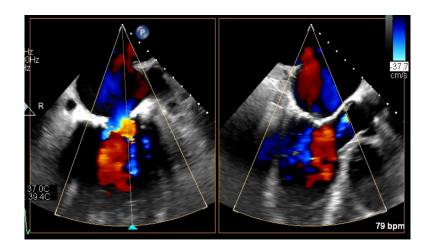


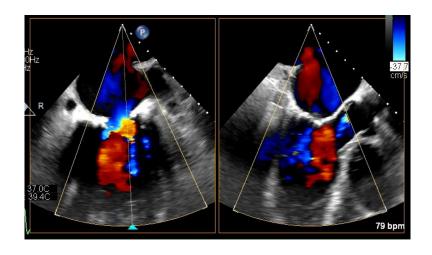






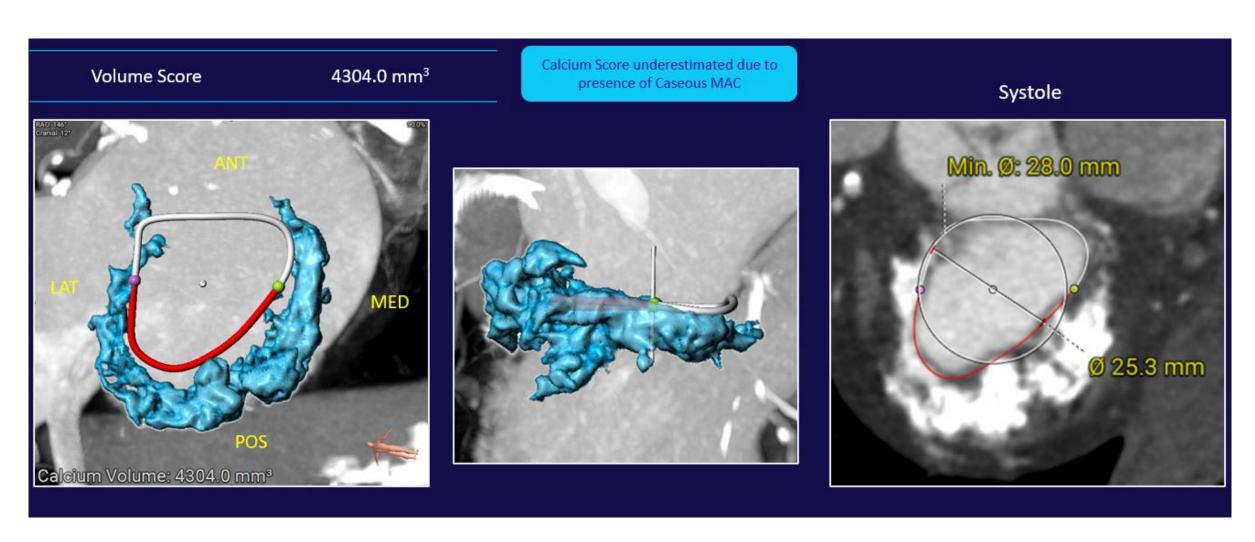






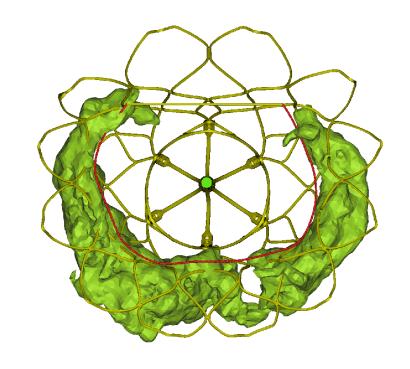
Associated with mitral stenosis and mitral regurgitation

Associated with mitral stenosis and mitral regurgitation


- Surgery can be prohibitive (clinical and technical reasons)
- Co-morbidities (chronic kidney disease, peripheral arterial disease) common
- Transcatheter options available but high screen-fail rate

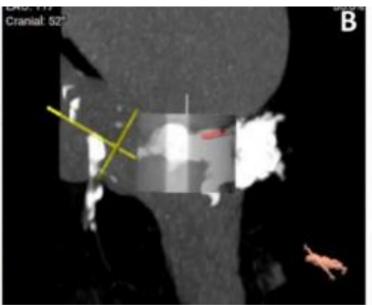
CT screening: Annulus too small

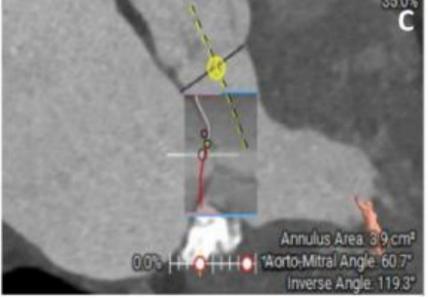
Smallest Tendyne: 25mm AP, 35mm intercommissural, 100 perimeter


Device over-sizing required for mitral calcification

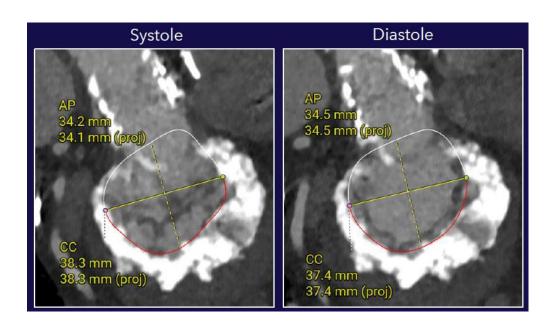
Heavier oversizing acceptable for severe MAC

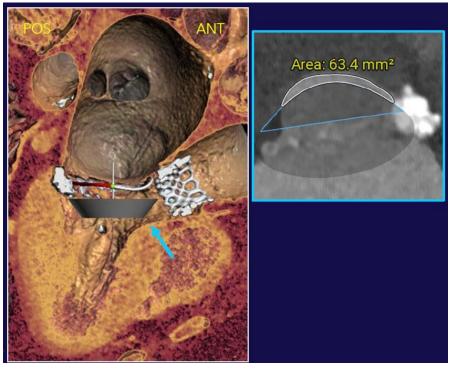
- to accommodate changes in annular dimensions after balloon valvuloplasty
- to accommodate irregular MAC and provide enough sealing to prevent PVL


- **SL Oversizing:** sometimes as high as 35%
- Perimeter Oversizing: sometimes as high as 35%
- IC Oversizing: sometimes as high as 50%

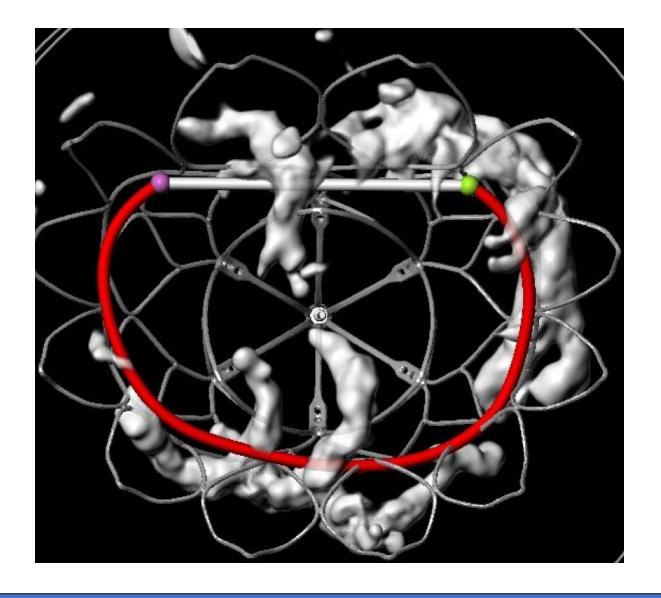


CT screening: LVOTO





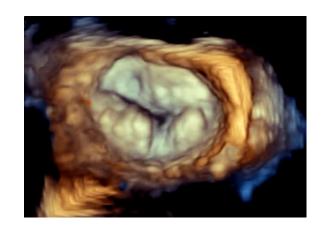
CT screening: LVOT too small

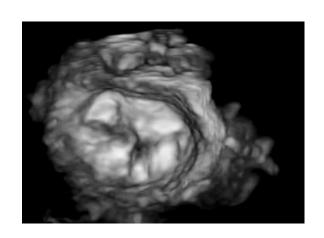


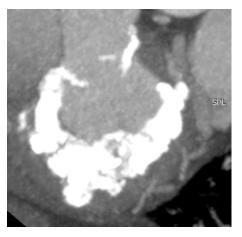
Minimum Neo-LVOT Area:		
End Systole	0.63 cm ²	

CT screening: protruding spicules

Potential Transcatheter Options



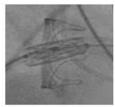

Valve-in-MAC using TAVI device


Valve-in-MAC using TA-Tendyne

Valve-in-MAC using TF-Intrepid

Valve-in-MAC using TF-Sapien M3

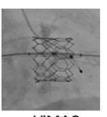
Valve-in-MAC



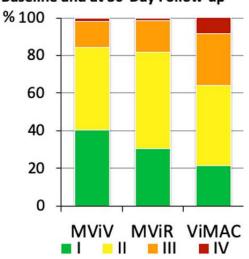
Thirty-Day Outcomes of Transcatheter
Mitral Valve Replacement for Degenerated
Mitral Bioprostheses (Valve-in-Valve),
Failed Surgical Rings (Valve-in-Ring), and
Native Valve With Severe Mitral Annular
Calcification (Valve-in-Mitral Annular
Calcification) in the United States: Data From
the Society of Thoracic Surgeons/American College
of Cardiology/Transcatheter Valve Therapy Registry

Mayra Guerrero, MD ☐, Sreekanth Vemulapalli, MD, Qun Xiang, MS, Dee Dee Wang, MD, Mackram Eleid, MD, Allison K. Cabalka, MD, Gurpreet Sandhu, MD, ... show ALL ..., and Ted Feldman, MD | AUTHOR INFO & AFFILIATIONS

Circulation: Cardiovascular Interventions • Volume 13, Number 3 • https://doi.org/10.1161/CIRCINTERVENTIONS.119.008425

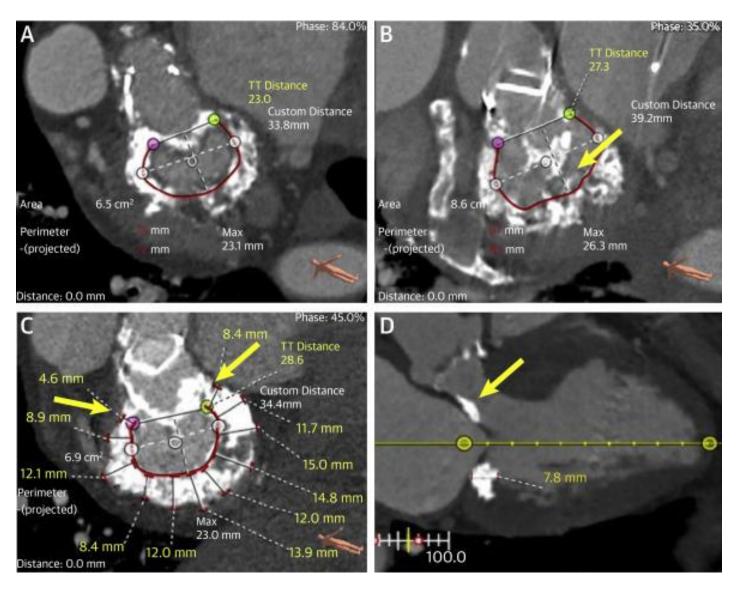

Early experience with MViV, MViR and ViMAC in the United States (TVT Registry 2013 to 2017)

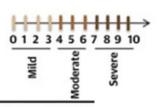

MViR n=123



ViMAC n=100

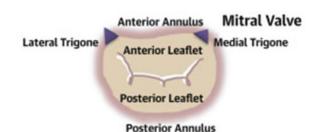
In-Hospital and 30-Day Mortality 21.8 20 18 15 10 9 6.3 5 0 In-Hospital 30-Day MViV MViR ViMAC


New York Heart Association Class at Baseline and at 30-Day Follow-up


Standardised Classification of MAC

CT-Based MAC Score

I. Calcium Thickness


<5mm=1

5-9.99mm=2

>10mm=3

JACC: CARDIOVASCULAR IMAGING

© 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

PUBLISHED BY ELSEVIER

VOL. 13, NO. 9, 2020

ORIGINAL RESEARCH

Charanjit Rihal, MD

A Cardiac Computed Tomography-Based Score to Categorize Mitral Annular Calcification Severity and Predict Valve Embolization

Rebecca T. Hahn, MD, Martin Leon, MD, Isaac George, MD, Vinayak Bapat, MD, William O'Neill, MD, D

II. Calcium Distribution

180-270°=2

JACC: CARDIOVASCULAR IMAGING
© 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

VOL. 13, NO. 9, 2020

ORIGINAL RESEARCH

A Cardiac Computed Tomography-Based Score to Categorize Mitral Annular Calcification Severity and Predict Valve Embolization

Mayra Guerrero, MD,^a Dee Dee Wang, MD,^b Amit Pursnani, MD,^c Mackram Eleid, MD,^a Omar Khalique, MD,^d Marina Urena, MD,^e Michael Salinger, MD,^c Susheel Kodali, MD,^d Tatiana Kaptzan, PhD,^f Bradley Lewis, MS,^g Nahoko Kato, MD,^a Hector M. Cajigas, BA,^b Olaf Wendler, MD,^j David Holzhey, MD,^j Ashish Pershad, MD,^k Christian Witzke, MD,^j Sami Alnasser, MD,^{m,n} Gilbert H.L. Tang, MD, MSc, MBA,^o Kendra Grubb, MD,^p Mark Reisman, MD,^g Philipp Blanke, MD,^f Jonathon Leipsic, MD,^f Eric Williamson, MD,^g Patricia A. Pellikka, MD,^a Sorin Pislaru, MD,^a Juan Crestanello, MD,^f Dominique Himbert, MD,^e Alec Vahanian, MD,^u John Webb, MD,^q Rebecca T. Hahn, MD,^d Martin Leon, MD,^d Isaac George, MD,^v Vinayak Bapat, MD,^v William O'Neill, MD,^b Charanjit Rihal, MD^a

Guerrero et al. JACC Card Imaging 2020

I. Calcium Thickness

<5mm=1

5-9.99mm=2

>10mm=3

JACC: CARDIOVASCULAR IMAGING

© 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

PUBLISHED BY ELSEVIER

VOL. 13, NO. 9, 2020

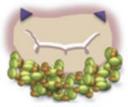
ORIGINAL RESEARCH

A Cardiac Computed Tomography-Based Score to Categorize Mitral Annular Calcification Severity and Predict Valve Embolization

Mayra Guerrero, MD,^a Dee Dee Wang, MD,^b Amit Pursnani, MD,^c Mackram Eleid, MD,^a Omar Khalique, MD,^d Marina Urena, MD,^e Michael Salinger, MD,^c Susheel Kodali, MD,^d Tatiana Kaptzan, PhD,^f Bradley Lewis, MS,^g Nahoko Kato, MD,^a Hector M. Cajigas, BA,^b Olaf Wendler, MD,^f David Holzhey, MD,^f Ashish Pershad, MD,^k Christian Witzke, MD,^f Sami Alnasser, MD,^{m,n} Gilbert H.L. Tang, MD, MSc, MBA,^o Kendra Grubb, MD,^p Mark Reisman, MD,^g Philipp Blanke, MD,^f Jonathon Leipsic, MD,^f Eric Williamson, MD,^g Patricia A. Pellikka, MD,^a Sorin Pislaru, MD,^a Juan Crestanello, MD,^f Dominique Himbert, MD,^e Alec Vahanian, MD,^u John Webb, MD,^g Rebecca T. Hahn, MD,^d Martin Leon, MD,^d Isaac George, MD,^v Vinayak Bapat, MD,^v William O'Neill, MD,^b Charanjit Rihal, MD^a

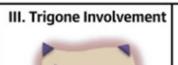
JACC: CARDIOVASCULAR IMAGING @ 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

VOL. 13, NO. 9, 2020


I. Calcium Thickness

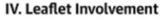
<5mm=1

5-9.99mm=2


>10mm=3

II. Calcium Distribution

180-270°=2


None=0

One=1

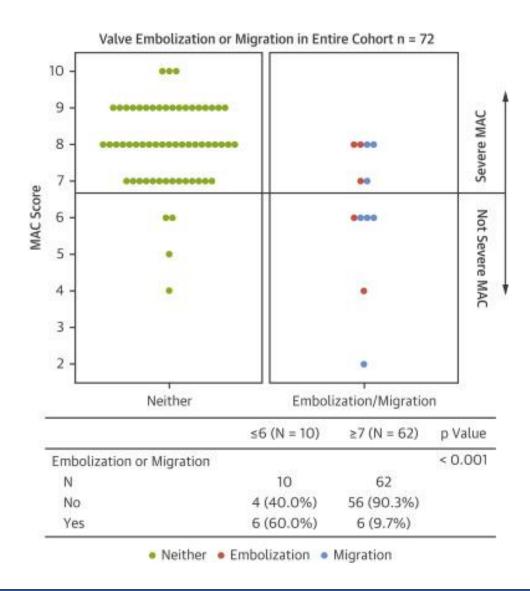
Both=2

None=0

One Leaflet=1

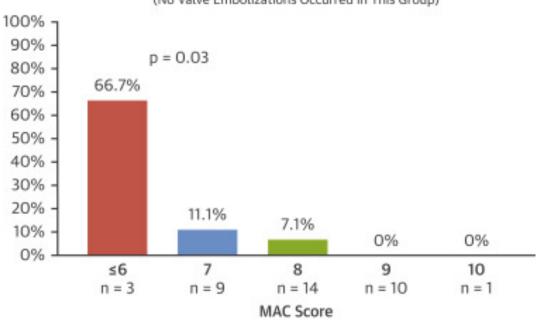
Both Leaflets=2

ORIGINAL RESEARCH


A Cardiac Computed Tomography-**Based Score to Categorize** Mitral Annular Calcification Severity and Predict Valve Embolization

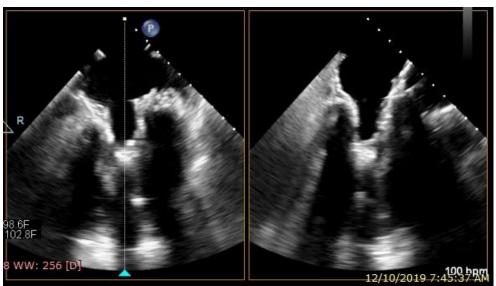
Mayra Guerrero, MD, Dee Dee Wang, MD, Amit Pursnani, MD, Mackram Eleid, MD, Omar Khalique, MD, Marina Urena, MD, e Michael Salinger, MD, Susheel Kodali, MD, Tatiana Kaptzan, PhD, Bradley Lewis, MS, Salinger, MD, Salinger, M Christian Witzke, MD, Sami Alnasser, MD, Gilbert H.L. Tang, MD, MSc, MBA, Kendra Grubb, MD, Mark Reisman, MD, Philipp Blanke, MD, Jonathon Leipsic, MD, Eric Williamson, MD, Patricia A. Pellikka, MD, Sorin Pislaru, MD, a Juan Crestanello, MD, Dominique Himbert, MD, Alec Vahanian, MD, John Webb, MD, Rebecca T. Hahn, MD, d Martin Leon, MD, Isaac George, MD, Vinayak Bapat, MD, William O'Neill, MD, b Charanjit Rihal, MD

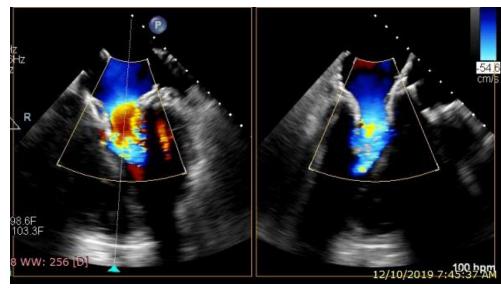
Issues with Valve-in-MAC

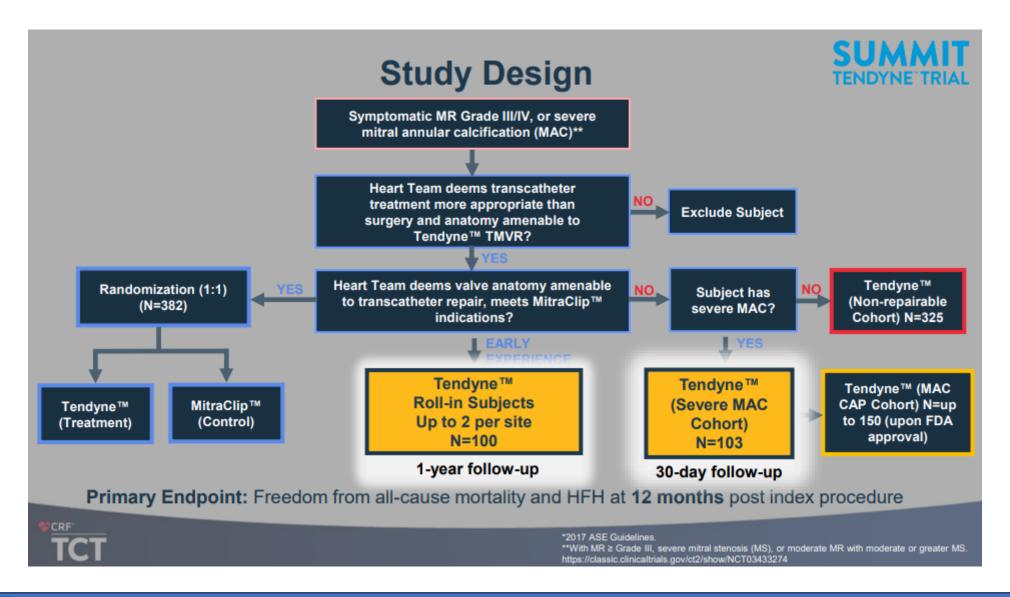


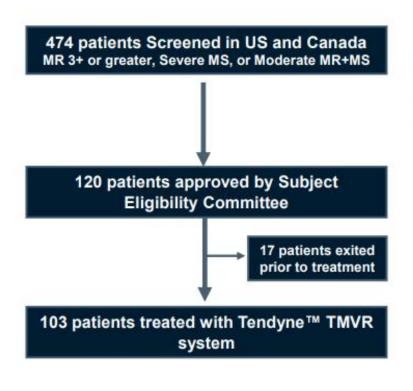
MAC score 7 - embolization/migration 12.5% MAC score ≥ 8 - 8.7% MAC score of ≥ 9 - zero (p = 0.023)

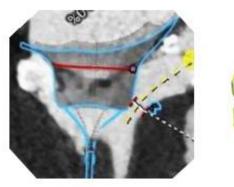

MAC \leq 6: OR 5.86 [1.00-34.26]; p = 0.049

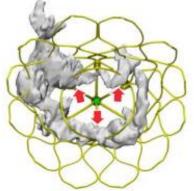

Valve Migration Rates in Relation to MAC Score Patients Treated With Adequate Size THV (No Valve Embolizations Occurred in This Group)


Tendyne-in-MAC


Tendyne-in-MAC




Subject Screening and Enrollment

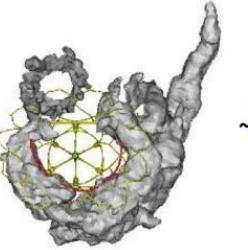


Primary Reasons for Screening Failure (75%):

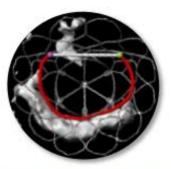
- Insufficient neoLVOT
- Annular dimensions outside of treatable range
- Interaction with inner valve frame

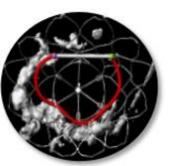
SUMMIT Severe MAC

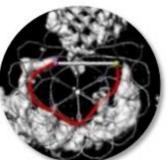
CAUTION: Investigational device.
Limited by Federal (U.S.) law to investigational use only



MAC Severity Treated


SUMMIT TENDYNE TRIAL


Median MAC Volume in Severe MAC Cohort: ~4000 mm3



Maximum ~38,000 mm³

SUMMIT Severe MAC

Baseline Characteristics

Subject Characteristics (N=103)	n (%) or mean ± SD
Age (yrs)	78.0 ± 6.5
Men	46 (44.7)
ВМІ	30.1 ± 6.4
NYHA functional class ≥ III	76 (73.8)
Frailty Score ≥2	57 (55.3)
Hypertension	92 (89.3)
Coronary artery disease	63 (61.2)
Prior myocardial infarction	16 (15.5)
Prior CABG	28 (27.5)
COPD	30 (29.1)
Diabetes mellitus	54 (52.4)

	n (%) or mean ± SD
Heart Failure Hosp within 12 mo	30 (29.1)
GFR< 60 mL/min/1.73 m ²	57 (55.3)
LV ejection fraction (%)	56.1 ± 9.5
Grade III or IV MR severity	89 (89.0)
Etiology of MR	
Primary	93 (90.3)
Secondary	7 (6.8)
Mixed	3 (2.9)
Severe MS	11 (10.7)
Severe MS & MR ≥ Grade II	7 (6.8)
STS-PROM (%)	7.1 ± 3.9

SUMMIT Severe MAC

Clinical Outcomes

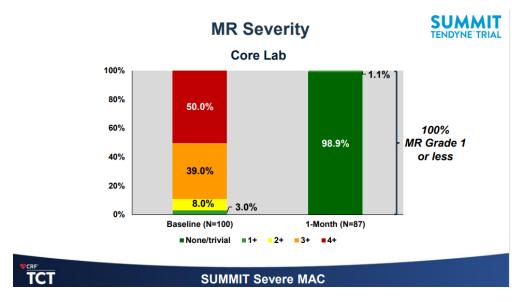
Procedural Events	n (%)
Procedural survival	101 (98.1)
Technical success*	97 (94.2)
Valve implanted [†]	103 (100)
Emergency surgery/intervention	6 (5.8)
СРВ	3 (2.9)
Procedural stroke	0 (0)

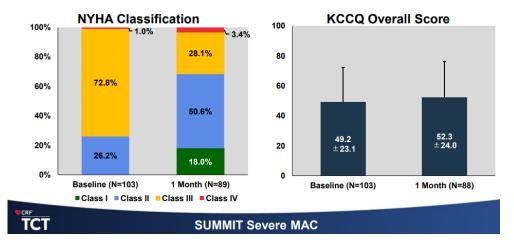
^{*}MVARC definition

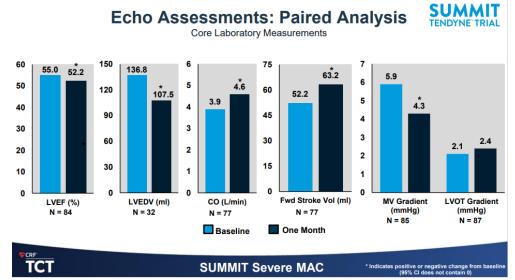
30-Day Events*	n (%)
All-cause mortality	7 (6.8)
Cardiovascular mortality	7 (6.8)
Disabling stroke	1 (1.0)
Myocardial infarction	1 (1.0)
Post-op mitral reintervention	2 (2.0)
Device thrombosis	0 (0)
Major bleeding	22 (21.4)

^{*}All events adjudicated by independent CEC per MVARC definitions

SUMMIT Severe MAC


* Indicates positive or negative change from baseline (95% CI does not contain 0)


[†]One valve retrieved with secondary valve implanted

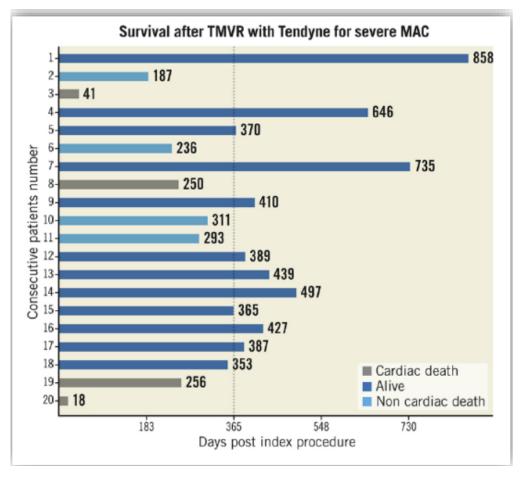


Heart Failure Symptoms and QoL

Tendyne in Severe MAC

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

Early outcomes of transcatheter mitral valve replacement with the Tendyne system in severe mitral annular calcification

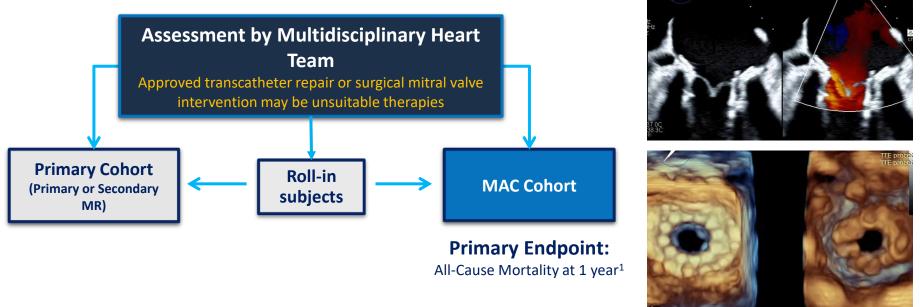

EuroIntervention 2022;17:1523-1531. DOI: 10.4244/EIJ-D-21-00745

Mario Gössl¹, MD; Vinod Thourani², MD; Vasilis Babaliaros³, MD; Lenard Conradi⁴, MD; Bassem Chehab⁵, MD; Nicolas Dumonteil⁶, MD; Vinay Badhwar⁷, MD; David Rizik⁸, MD; Benjamin Sun¹, MD; Richard Bae¹, MD; Robert Guyton³, MD; Michael Chuang⁹, MD; Philipp Blanka¹⁰, MD; Paul Sorajja¹, MD

1. Valve Science Center, Minneapolis Heart Institute Foundation, Minneapolis, MN, USA; 2. Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA; 3. Emory Structural Heart and Valve Center, Atlanta, GA, USA; 4. University Heart & Vascular Center Hamburg, Hamburg, Germany; 5. Ascension Via Christi Hospital, Wichita, KS, USA; 6. Groupe CardioVasculaire Interventionnel, Clinique Pasteur, Toulouse, France; 7. West Virginia University Heart and Vascular Institute, Morgantown, WV, USA; 8. HonorHealth, Scottsdale, AZ, USA; 9. Beth Israel Deaconess Medical Center, Boston, MA, USA; 10. Department of Radiology, St. Paul's Hospital and University of British Columbia Vancouver, BC, Canada

30-day mortality: 5%

1-year CV mortality: 20%



MAC Cohort Inclusion Criteria

INCLUSION CRITERIA

¹Performance goal based on comparative literature

- Patients with Moderate-to-Severe or Severe MR with presence of MAC, OR
- Patients with Moderate MR, Mitral Stenosis with presence of MAC

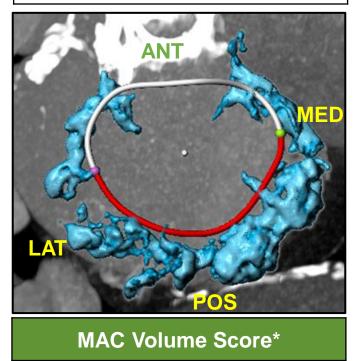
TTE proces
TTE proces
TTE proces

Baseline Characteristics

The Intrepid[‡] TMVR-TF System has been used to treat patients with MAC who have mitral valve anatomies deemed unsuitable for TEER by the Multidisciplinary Heart Team as part of the APOLLO Trial MAC Cohort.

Subject Demographics			
	Patient 1	Patient 2	Patient 3
Age and Sex	77-year-old male	66-year-old male	85-year-old female
Disease Etiology / Morphology	Primary / Type IIA	Primary / Type II; Concurrent IIIA	Primary / Type IIIA
NYHA	Class II	Class III	Class III
STS Score - PROM	8.0%	2.3%	27.7%
Cardiac History			
Atrial Fibrillation/Flutter	Yes	Yes	Prior atrial fibrillation
Prior SAV or TAV	SAV	SAV	None
Prior PPI, ICD, CRT-D	CRT-D	PPI	None
RV function	Normal	Moderate Dysfunction	Normal
Case Planning			
Device Size	48 mm	48 mm	42 mm

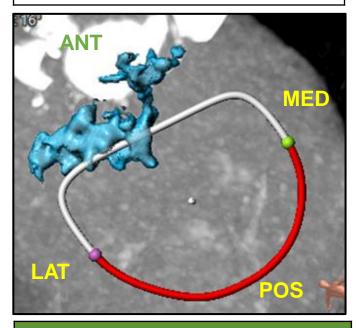
Baseline Characteristics


Echo Core Lab Data			
	Patient 1	Patient 2	Patient 3
MR Grade	Severe	Moderate-Severe	Moderate-Severe
MAC Grade	Severe	Mild	Severe
LVEF	56%	39%	65%
TR Grade	Moderate	Mild	Trivial
LVEDV	154 mL	215 mL	170 mL
LVESV	67 mL	131 mL	58 mL
PASP	41 mmHg	39 mmHg	36 mmHg
MV Mean Gradient	5.0 mmHg	6.6 mmHg	4.0 mmHg

CT Mitral Annular Calcification

Patient 1

MAC: Severe



*Score may be underestimated in patient 1 due to regions of possible caseous MAC

5156 mm³

Patient 2

MAC: Mild

MAC Volume Score

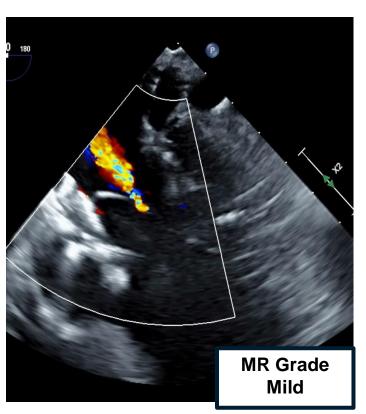
1136 mm³

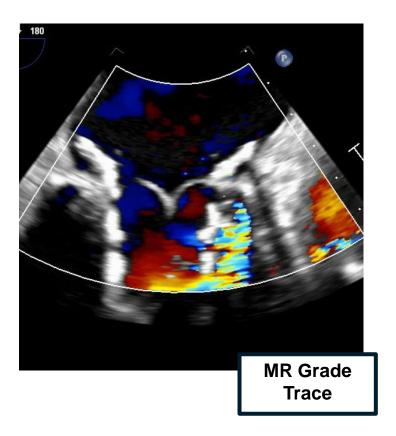
Patient 3

MAC: Severe

MAC Volume Score

8519 mm³



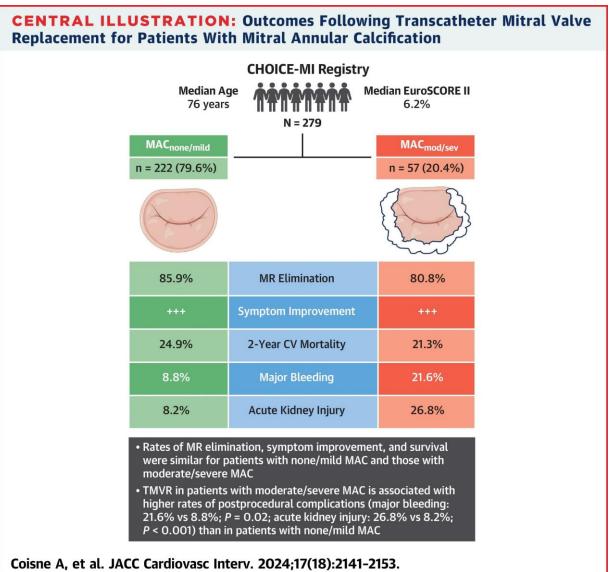

Post-Deployment Results

Patient 1 **MR Grade** Mild

Patient 2

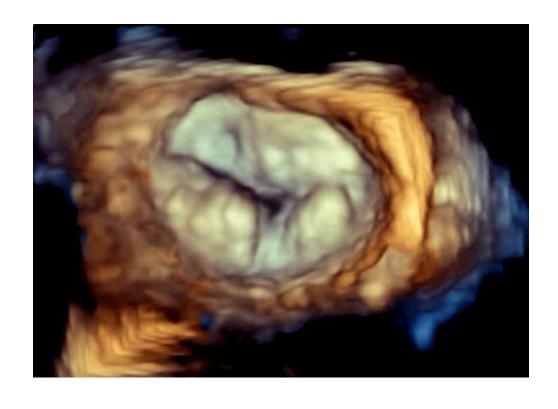
Patient 3

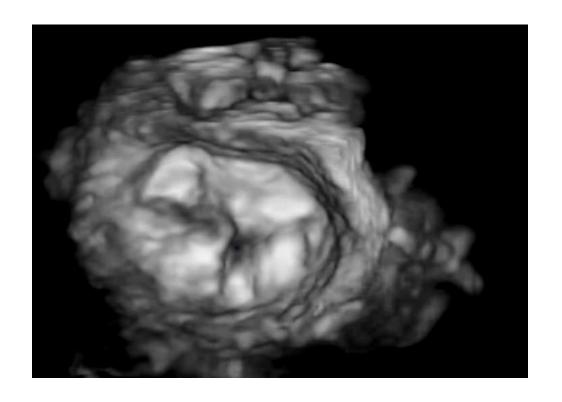
Device-in-MAC: "Real-World" Clinical Results



Device-in-MAC: "Real-World" Clinical Results

Device-in-MAC: "Real-World" Clinical Results


TMVI may be considered in symptomatic patients
with extensive MAC and severe MV dysfunction at
experienced Heart Valve Centres with expertise in
complex MV surgery and transcatheter
interventions. 542,680,681


2025 ESC/EACTS Guidelines for the management of valvular heart disease. EHJ 2025 00, 1-102

= Mitral Valve "Conundrum"

Mitral valve calcification: transcatheter options

Thank you very much for your kind attention

