

Hypertrophic Cardiomyopathy Surgical techniques for obstructive disease

Pr Vincent Tchana-Sato

Head of the Department of Cardiovascular and thoracic surgery

CHU Liege

Conflict of interest

NONE

Introduction

- HCM is a relatively common genetic contemporary heart disease
- Diverse and complex phenotypic/genetic expression & clinical course
- Nowadays > highly treatable with effective options that alter natural history > reduced mortality+ normal or extended life expectancy
- In patients with HF symptoms (mainly due to LV outflow tract obstruction), septal myectomy or percutaneous alcohol ablation (in selected patients) can reverse the course of the disease.

Prevalence

high proportion of unrecognized disease in the general population

Hypertrophic obstructive cardiomyopathy (HOCM)

 >50% of symptomatic (Chest pain, exertional dyspnea, presyncope) patients with HCM have LVOT obstruction

 Various phenotypes of HOCM > clinical manifestation and surgical management.

Phenotypes Variants of hypertrophic cardiomyopathy

Left ventricular outflow track (LVOT)

- Fibrous trigones (RFT & LFT)
- Subaortic curtain
- Anterior mitral leaflet (AML)
- Muscular interventricular septum
- Membranous septum (MS)

Pathophysiology subaortic obstruction

SAM Elongated anterior leaflet (+/-) Mitral regurgitation

Chordae tendinae

Papillary Muscle

Diastolic dysfunction, myocardial ischemia, arrythmia, metabolic & energetic abnormalities

Surgery

Surgical Indications

Clinical: symptomatic severe dyspnea or chest pain (NYHA III or IV), or syncope attribuable to LVOTO interfering with everyday activity or QOL despite OMT

➤Hemodynamic: dynamic LVOT gradient at rest or with physiologic provocation (peak Gradient ≥50 mmHg + septal LVH+SAM)

>Anatomic: targeted anterior septal thickness

Historical perspective

• Russel Brock (1957): description

• Clealand technique (1958) : very limited septal myectomy

• Morrow technique (1961) : limited Septal myectomy

• Messmer technique (1994): extended Septal myectomy

Morrow

Poor exposure Limited resection

Messmer

Better exposure Additional strategies

Preoperative assessment of potential myectomy candidates

Modality	Findings
Echocardiography	 Wall thickness SAM LVOTO LA dimensions Systolic and diastolic function & LV cavity size Rule out others etiologies
Cardiac magnetic resonance	 Pattern and degree of hypertrophy Fibrosis with LGE
Cardiac CT	Myocardial bridges
Cardiac catheterization	LVOTOMyocardial bridges

Surgical Challenges

Broad morphological spectrum (septal thickness mild to massive) associated with diverse abnormalities of mitral valve apparatus.

Basal anterior septum (in continuity with the anterior free wall) the most common location for LVH. But LVH can be limited and focal in some patients

Compression of coronary arteries by myocardial bridges (diastolic FFR)

3 to 12 g of muscle

Transaortic extended septal myectomy

Apical Myectomy for Symptomatic patients with apical HCM and small LV end-diastolic volume

Transatrial transmitral approach

- Sternotomy
- Robotic
- Thoracotomy

- Limited resection
- Detachment of AML

- Infants & small children
- Association with degenerative
- MV disease

Double approach

Transaortic & transapical

ALTERNATIVES APPROACHES

CENTRAL ILLUSTRATION: Transapical Beating-Heart Septal Myectomy and

Fang J, et al. J Am Coll Cardiol. 2023;82(7):575-586.

ALTERNATIVES APPROACHES

Mazine et al. Canadian journal of cardiology 2016

Adjuncts to septal myectomy

Arrythmia surgery : Cox-Maze

Concomitant mitral valve disease

Around 7% of patients with obstructive HCM undergoing myectomy have intrinsic MV disease

- > myxomatous with prolapse/ruptured CT > MV Repair
- mixed stenosis/regurgitation > MV Replacement
- ➢isolated MV replacement is not recommended
- Mitraclip? Inconsistent results

Concomitant mitral valve disease

Remodeling or repair of the Mitral valve apparatus and submitral structures :

- Plication or pericardial patch to shorten an elongated AML ??
- resection of residual leaflet tissue ??
- Cutting of secondary fibrotic CT, accessory muscular and fibrous structures connecting PM to septum or free wall.

Myectomy and AML shortening

CENTRAL MESSAGE

MV leaflet lengths are increased in patients with obstructive HCM, but leaflet length is not associated with LVOT gradients before or after septal myectomy.

Additional MV procedures are unnecessary unless

intrinsic MV disease is present (+/- 7% patients)

Carvahlo et al.; JTCVS 2021

Papillary Muscle abnormal insertion on the Mitral valve lealfet

Fibrous attachment between AML and Septum

Myocardial Bridges

Detunneling of the LAD

Right ventricular HOCM

Table 1 Tabulated data for surgical myectomy at 10 consortium HCM centers

Variable	Total number myectomy	Age at myectomy (years)	Male	VSD	PPM^{\dagger}	MVR as sole operative strategy	Operative (30-day) mortality, n	Operative mortality
Clevland Clinic	2851	56 ± 14	53%	0.1%	4.1%	153*	21	0.7%
Mayo Clinic	2782	57 ± 16	54%	0.1%	6.6%	0	14	0.5%
Fuwai	2220	47 ± 15	60%	0.5%	0.9%	0	11	0.5%
Tufts	825	54 ± 15	54%	0.7%	6.0%	0	5	0.6%
Toronto	740	55 ± 14	61%	0.3%	6.6%	14	7	0.9%
Monza/Bergamo	665	53 ± 16	55%	0.2%	3.2%	0	3	0.4%
NYU	515	57 ± 13	51%	0.6%	2.7%	3	4	0.8%
UCLA	171	41 ± 29	50%	0	8.8%	24	1	0.6%
Barcelona	144	61 ± 14	45%	1%	4.8%	8	1	0.6%
Sydney	60	52 ± 18	46%	5%	15.0%	0	0	0
Total	10,973	54	55%	0.3%	4%	202 (1.8%)	67	0.6%

Abbreviations: MVR = mitral valve replacement; NYU: New York University; PPM= permanent pacemaker; UCLA: University of California Los Angeles; VSD: (iatrogenic) ventricular septal defect; Y: years

* predominantly in patients with mild anterior septal thickness (<18 mm) and LV outflow tract obstruction, usually after mitral valve repair unsuccessful in satisfactorily relieving outflow gradient with or without papillary muscle reorientation.

[†] can include patients with preoperative conduction disease.

National survey of Septal myectomy by yearly institutional volumes (Holst et al from the STS database)

Alcohol Septal ablation (ASA)

HOCM: alcohol septal ablation

- High volume experienced centers
- Rapid recovery
- Morbi-Mortality similar to surgery
- less uniform and slower reduction in gradient
- high rate of complete heart block 10-15%
- inconsistent results (thickness & MV apparatus)
- Ventricular tachyarrythmias in susceptible patients

	Extended Septal Myectomy	Alcohol Septal Ablation		
Pre-op evaluation	 Marked Septal hypertophy > 30 mm Marked LVOT obstruction ≥ 50mmHg Anatomic abnormalities involving the MV apparatus and PM 	 Older (>60 yo) patients Poor surgical candidates with multiple co-morbidities Adequate distribution of septal perforator arteries 		
Procedures	 Open heart myocardial excision +/- release of abnormal septal connections, MV annuloplasty 	 Percutaneous ethanol injection through septal perforator arteries for myocardial scar formation 		
Limitations	 Risk of RBBB, latrogenic VSD Experienced centers Follow-up 	 Higher risk of arrhythmias and SCD when compared to surgery Higher rates of symptom recurrence and re-operation 		
Advantages	 Long-term LVOT gradient reduction Low re-operation rates Low short and long term mortality rates at experienced centers 	 Widely available procedure Short recovery period Solomon et al. Seminar Th 2018 		

Conclusions

- Exended septal myectomy is a safe and effective therapy for HOCM
- Best outcomes are observed at centers with interdisciplinary expertise (≥ 10 procedures/y)
- Evolution of operatives techniques (better understanding of pathophysiology) > combined approach, minimally invasive approaches,

Thank you for your attention

Pathophysiology subaortic obstruction

SAM Elongated anterior leaflet (+/-) Mitral regurgitation

Chordae tendinae

Papillary Muscle

Diastolic dysfunction, myocardial ischemia, arrythmia, metabolic & energetic abnormalities

HOCM: alcohol septal ablation

Anatomy: suitable septal perforator coronary anatomy and absence of structural abnormalities of mitral apparatus

Clinical profile: advanced age important comorbidities aversion to open-heart surgery

Contraindications: children and young adults, other cardiac abnormalities requiring operation (valve, coronary, subaortic membrane, etc....).

MERCI POUR VOTRE ATTENTION

HOCM: Pharmacological strategies

- Most of the time: objective is palliation, mitigation and control of HF symptoms.
- Established drugs: Negative inotropic drugs (BB, verapamil, disopyramide)
- Newer drugs: Mavacamten, genetic therapy?

