EUROVALVE & STRUCTURAL CARDIOMYOPATHIES NH PALERMO

SAVE THE DATE OCTOBER 24&25,2024

How should we manage? Patient-prosthesis mismatch after SAVR

Anna Sannino MD, PhD Federico II University, Napoli, Italy

COURSE DIRECTORS

Patrizio Lancellotti, Belgium Khalil Fattouch, Italy Gilbert Habib, France José Luis Zamorano, Spain Philippe Pibarot, Canada Mani Vannan, USA Madalina Garbi, United Kingdom Bernard Cosyns,Belgium

LOCAL HOST Khalil Fattouch, Italy

Current Topics

The Problem of Valve Prosthesis-Patient Mismatch

SHAHBUDIN H. RAHIMTOOLA, M.D.

SUMMARY Valve prostheses have played an important part in the past two decades in the management of patients with valualar heart disease. However, many of the devices used in valve replacement have introduced new clinical problems. This

Rahimtoola Circulation 1978

Pibarot P, JACC 2020

How to chose the right prosthesis?

TABLE 1 Imaging Criteria for the Differential	Diagnosis of Normal I	Prosthetic Valve Functio	n vs. PPM vs. Valve St	Prosthesis model	Label prosthesis	
	Normal	Moderate PPM	Seve	Mild/Moderate Stencest	Severe Steriosis	
Leaflet morphology and mobility by TTE/TEE or MDCT*	Normal	Normal	N	Often abnormal	Abnormal	
Doppler echo parameters				British and British	Determine the Normal EOA	
Peak velocity, m/s	<3	3-3.5	2 10 1	Patient's BSA	of the selected prosthesis'	
Mean gradient, mm Hg	<20	20-30	2 NO 1	20-35	=35	
Doppler velocity index	≥0.35	≥0.30	≥	0.25-0.35	< 0.25	
EOA, cm ²	>1.00	>1.00	- 11-	Variable	<0.80	
Indexed EOA, cm ² /m ²	>0.85	0.66-0.85	≤0.65	Calculate the root	p.1	
If BMI ≥30 kg/m ²	>0.70	0.56-0.70	≤0.55	Normal EDA / BSA		
Difference (normal EOA - measured EOA), cm ²	<0.30 (<1 SD)	<0.30 (<1 SD)	<0.30 (<1 SD)	0.30-0.60 (1-2 SD)	>0.60 (>2 50)	
Contour of the transprosthetic jet!	Triangular, earty peaking	Triangular, early peaking	Triangular, early peaking	Triangular to intermediate	Rounded, symmetrical	
Acceleration time, mst	<80	<80		165 cm ² lm ²	\$0.85 cm ² /m ²	
Acceleration time/LV ejection time ratio	< 0.32	<0.32	(s0.55 cm ² /m ² # patient is obese)		(st).70 cm ² /m ² if patient is	
Changes in Doppler echo parameters during follow-up			Rick	of Severe PPM	Risk of Moderate PP	
Increase in mean gradient, mm Hg	<10	<10	<10	10-19	≥20	
Decrease in EOA, cm ²	<0.30	< 0.30	< 0.30	0.30-0.60	>0.60 1	
Percent decrease in EOA, %	<25	<25	<25	25-49	Vulmerability Pactors to F	
Percent decrease in DVI, %	<20	<20	<20	20-39	Young physically active patients Depressed LVEF	
Hybrid (Doppler CT) parameters Indexed hybrid EOA, cm ² /m ²	>1.00		≤0.80	0.81-1.00	Low-Row, low-gradient AS Severe LVH Conconsitant MR (not treated at	
ir ewi =30 kg/m.	>0.85		=0.70	0.71-0.85	YES	

Step 2 Consider preventive dirategies

implant prosthesis with better hemodynamic

performance and larger EOA

+ Enlarge aortic armalus to accommodate a large prosthesia

- Perform TAVR in lieu of SAVR

- Fracture bioprosthesis stent (for valve-in-valve)

	4.0		2.2	24	2.7	3.0	n. /
Prosthetic Valve Size (mm)	19	21	23	25	27	29	Reference no.
Stented Bioprosthetic valves							
Medtronic Intact	0.85	1.02 ± 0.10	1.27 ± 0.11	1.40 ± 0.20	1.66 ± 0.16	2.04 ± 0.23	(2)
Medtronic Mosaic		1.22 ± 0.27	1.38 ± 0.23	1.65 ± 0.39	1.59 ± 0.33	1.65 ± 0.37	(95)
Hancock II	_	1.18 ± 0.11	1.33 ± 0.16	1.46 ± 0.15	1.55 ± 0.18	1.60 ± 0.15	(3)
Carpentier-Edwards SAV 2650	_	1.16 ± 0.14	_	_	_	_	(96)
Carpentier-Edwards Pericardial 2900	1.10	1.30	1.50	1.80	1.60	_	(97)
Stentless bioprosthetic valves							
Medtronic Freestyle	1.15	1.35 ± 0.21	1.48 ± 0.33	2.00 ± 0.39	2.32 ± 0.48	_	(39)
*	1.29 ± 0.19	1.46 ± 0.32	1.79 ± 0.33	2.34 ± 0.69	2.67 ± 0.75	_	(98)
St. Jude Medical Toronto SPV	_	1.30	1.50	1.70	2.00	2.50	(SIM^{\dagger})
-			1.49 ± 0.45	1.70 ± 0.78	2.12 ± 0.66	2.70 ± 1.03	(99)
Prima Edwards	0.80	1.10	1.50	1.80	2.30	2.80	(100)
Mechanical valves							
Medtronic Hall	$1.19 \pm 0.21^{*}$	1.34 ± 0.15				_	(96)
Carbomedics Standard	1.00 ± 0.40	1.54 ± 0.31	1.63 ± 0.30	1.98 ± 0.41	2.41 ± 0.46	2.63 ± 0.38	(93)
	1.11 ± 0.13	1.52 ± 0.22	1.84 ± 0.25	2.12 ± 0.31	2.65 ± 0.21	_	(14)
St. Jude Medical Standard	_	1.73 ± 0.38	2.13 ± 0.61	_	_	_	(101)
2	_	1.76 ± 0.47	2.11 ± 0.63	_	_	_	(26)
	1.04 ± 0.19	1.38 ± 0.22	1.52 ± 0.26	2.08 ± 0.41	2.65 ± 0.58	3.23 ± 0.30	(13)
St. Jude Medical Hemodynamic Plus	1.30 ± 0.30					_	(102)
- ,		2.01 ± 0.17					(101)
		2.15 ± 0.29			_	_	(26)

Pibarot P, JACC 2020 Pibarot JIMG 2019

Causes of Elevated Gradients Across Prosthesis

Zoghbi et al. J Am Soc Echocardiogr, 22:975-1014, 2009.

jestive	
<i>c valve</i> inding.	

High Gradients after SAVR

Cave for BMI \geq 30 kg/m² **PPM insignificant if EOAi >0.70** Moderate if >0.55 cm²/m² and Severe if <0.55 cm²/m²

Dahou 2016

Tubular aorta (<3cm)

Zoghbi et al. J Am Soc Echocardiogr, 22:975-1014, 2009.

Measurement Errors

1. Incorrect **LVOT** EOA.

2. LVOT VTI meas EOA.

3. Aortic prosthes only may result in f

Suprasternal Notch

R Supraclavicular

R Parasternal

Subcostal

Clinical Impact of PPM after SAVR

Prosthesis-Patient Mismatch (PPM)

Herrmann, H.C. et al. J Am Coll Cardiol. 2018; 72 (22):2701-11

Mortality (%)

Case #1: Elevated Gradients Across AV Prosthesis

71 years old man **Previous History of CAD** Severe AS treated with Edwards SAPIEN 3 23 mm -> EOAp $1.6 \pm 0.2 \text{ cm}^2$ BSA 1.9 m2 \rightarrow $iEOAp = 0.84 \text{ cm}^2$

Predicted vs Measured PPM after SAVR

P < 0.001 for BMI-adjusted vs not adjusted in all PPM categories. P < 0.001 for PPM,, vs PPM, in all PPM categories.

- Measured PPM method overestimates PPM
- BMI adjustment of EOAi cutpoints in obese in severe PPM for predicted and measured EO/
- $(PPM_P group: 75.0\% and PPM_M group: 57.0\%$
- the presence of severe PPM was apparent at maintained through 2 years, with only minima days to 2 years
- PPM_p is more specific for true-severe PPM

Thourani et al. Ann Thor Surg 2024

Strategies to Prevent PPM

- TAVR
- Aortic root or annular enlargement
- Sutureless Valves

Ternacle J et al. JACC Cardiovasc Interv. 2021

Small Aortic Annulus: the VIVA Trial

- at 60 days

• 93% were women, most of them at low surgical risk, and with close to one-third of patients undergoing either aortic root enlargement maneuvers or sutureless valve implantation in the surgical group, and more than half of patients receiving selfexpandable supra-annular valves in the TAVR group

no significant differences between TAVR and SAVR in valve hemodynamic outcomes

• TAVR and SAVR exhibited no significant differences in clinical outcomes including mortality, stroke, and cardiac rehospitalization events at 2-year follow-up

Rodes-Cabau et al. Circulation 2024

Original Article Self-Expanding or Balloon-Expandable TAVR in Patients with a Small Aortic Annulus

Among patients with severe aortic stenosis and a small aortic annulus who underwent TAVR, a selfexpanding supraannular valve was noninferior to a balloon-expandable valve with respect to clinical outcomes and was superior with respect to bioprosthetic-valve dysfunction through 12 months.

Herrmann HC et al. N Engl J Med2024;390:1959-1971

Take Home Messages

- \geq Severe PPM_p is more accurate than PPM_m for value hemodynamics. Both are associated with higher mortality.
- > Valve "size" and model, patient's prior studies
- > High gradient does not always mean prosthesis dysfunction
- TAVR and sutureless values have lower incidence of PPM
- CT assessment before SAVR is associated with reduced incidence of PPM
- > Aortic root or annular enlargement is an option by high volume surgeons (critical need for standardization, education, and quality improvement for AE techniques due to high variability in surgeon expertise and increased early mortality)
- > Self-expandable supra-annular TAVR might be superior to balloon-expandable in terms of valve dysfunction.

