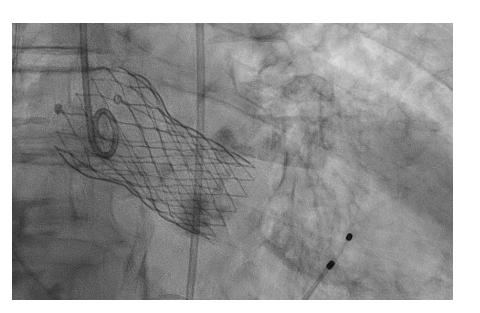
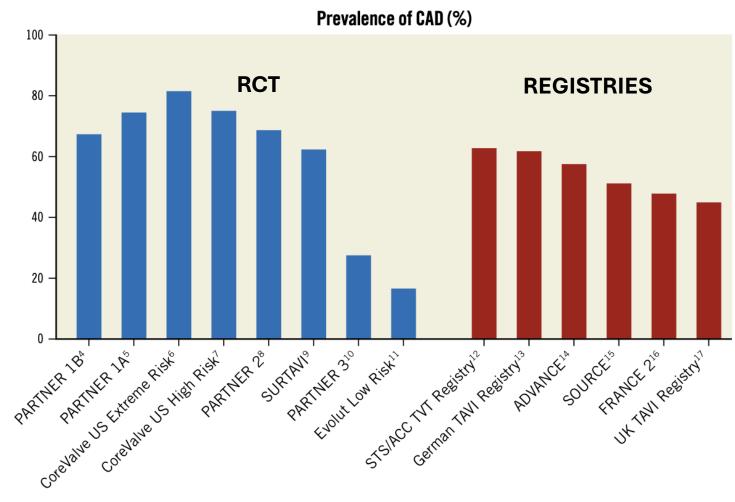


# Coronary Artery Disease In TAVI Patients



Mathieu Lempereur, MD, PhD, FESC University Hospital of Liège, Belgium




### • No Conflict of Interest to declare

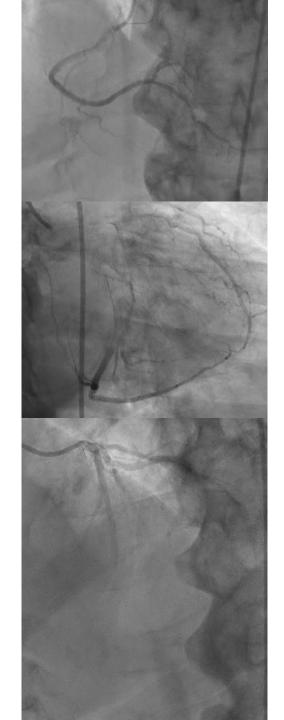
## Prevalence of CAD in TAVI population

- CAD in ~ 50% of TAVI patients
- Prior PCI in  $\sim 20\%$
- Prevalence decreases with reduction in age and surgical risk





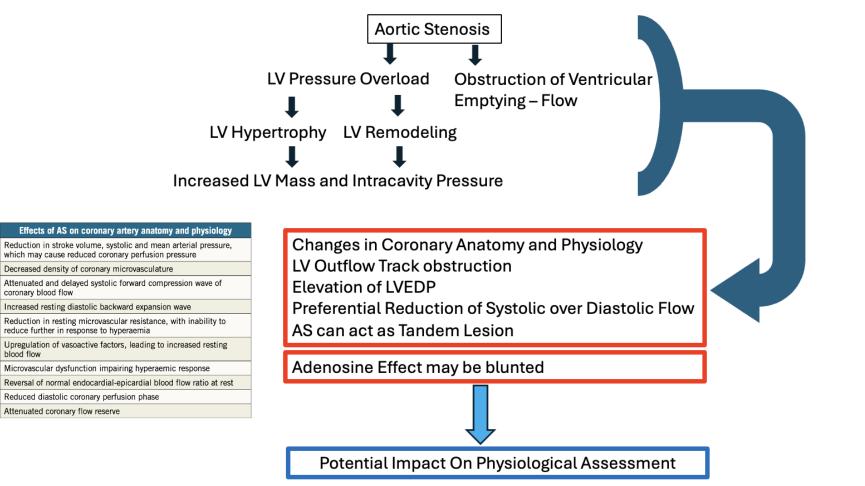
## Management of CAD in TAVI patients


| <b>Under</b> -Diagnosis/Treatment                                                                                                                                     | <b>Over</b> -Diagnosis/Treatment                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Symptoms (angina, dyspnea)</li> <li>Altered Quality of Life</li> <li>Acute Coronary Syndrome</li> <li>CAD progression<br/>Plaques destabilization</li> </ul> | <ul> <li>Symptoms (angina, dyspnea)</li> <li>Altered Quality of Life</li> <li>Acute Coronary Syndrome</li> <li>CAD progression<br/>Plaques destabilization<br/>In-stent restenosis, Stent Thrombosis</li> </ul> |
| <ul> <li>Ischemia-induced hemodynamic<br/>instability during TAVI procedure</li> <li>More difficult coronary access after TAVI if<br/>needed</li> </ul>               | <ul> <li>Contrast-induced nephropathy</li> <li>Bleeding (<dapt)< li=""> <li>Time</li> <li>Cost</li> </dapt)<></li></ul>                                                                                         |

In any case, if PCI, aim for optimal results and keep it simple to limit risk of related events

## **Diagnostic CAD evaluation**

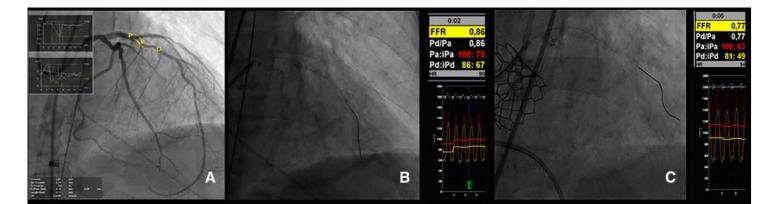
### 1. Invasive Coronary Angiography


- Standard assessment
- Benefits:
  - 1. Good performance even with significant burden of Ca >< CT
  - 2. Guidelines
  - 3. Concomitant functional/imaging assessment or PCI
- Timing:
  - Before: minimize contrast volume and procedure duration of TAVI
  - Concomitant: non-surgical candidate or low probability of CAD
- Disadvantages
  - Risk of vascular complications
  - Risk of contrast nephropathy
  - Burden of healthcare system
  - Delay in AS treatment
- Remains the mainstay of CAD assessment in most TAVI candidates



### 2. Invasive Coronary Physiology Assessment

1. Reliability of Invasive Physiology Assessment

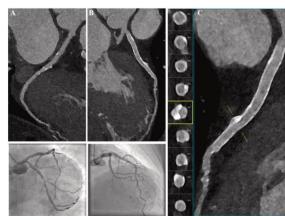

blood flow

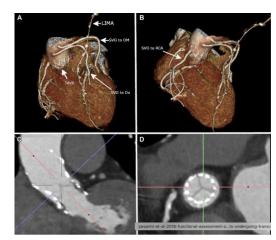


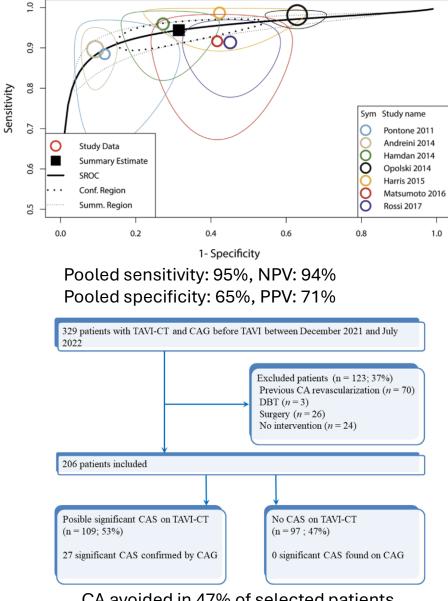
### 2. Invasive Coronary Physiology Assessment

### 2. Data

- No RCT data
- Limited observational studies
- Studies evaluating FFR/iFR before/after TAVI
- Conflicting findings
- Correlation with clinical outcomes
- Is iFR a better option?
- Validation of other (non-) Hyperemic cutoffs?





Patel K et al. JACC Cardiovasc Interv. 2021 Oct 11;14(19):2083-2096 Pesarini G et al. Circ Cardiovasc Interv. 2016 Nov;9(11):e004088

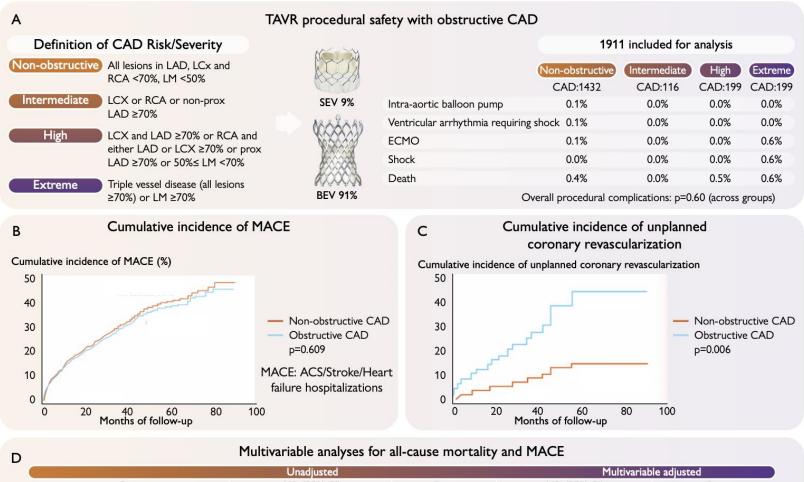
### 3. Non-Invasive CAD Assessment

- MSCT for preprocedural planning
  - → May be used for concomitant CTCA
- Advantages
  - 1. Lower risk of complications
  - 2. Lower burden on Healthcare system
  - 3. Decreased delay to AS treatment
- To consider in **patients** with low pretest probability of CAD and expected good image quality (young patients with low CV profile)
- Evolution with techniques (IA)








#### CA avoided in 47% of selected patients

Lecomte A et alDiagn Interv Imaging. 2023 Nov;104(11):547-551. van den Boogert TPW et al. Neth Heart J. 2018 Dec;26(12):591-599. Widmer R. et al. JSCAI, Volume 3, Issue 3, 101301 van der Bie J. et al. Eur J of Radiol, Volume 163, 110829

## Management of CAD

- PCI in patients with stable CAD
  - PCI should be performed in case of severe CAD (>70%, >50% in LM) in proximal segments (Class IIa, C)
    - Particularly if ACS, angina, subocclusive lesions
- Optimal **timing** based on clinical presentation, anatomical characteristics, coronary lesions complexity, THV choice

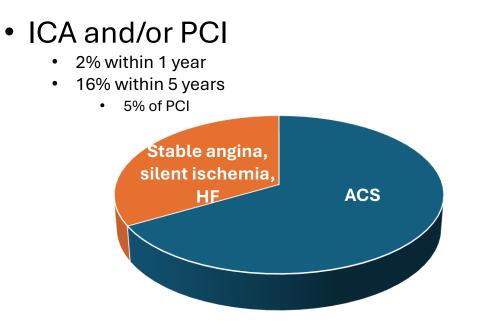
| PCI before TAVI                                                                                                                                                                                                                                                                         | PCI after TAVI                                                                                                                                                                                                                                                         | Combined PCI and TAVI                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Easier coronary access (especially for self-expanding THV with a supra-annular leaflet position)</li> <li>Lower risk of ischaemia-induced haemodynamic instability (i.e., during rapid pacing)</li> <li>Reduced contrast use compared with concomitant PCI and TAVI</li> </ul> | <ul> <li>More reliable FFR/iFR of intermediate lesions</li> <li>Lower risk of haemodynamic instability during complex PCI (i.e., with rotational atherectomy and impaired LV function)</li> <li>Reduced contrast use compared with concomitant PCI and TAVI</li> </ul> | <ul> <li>Use of the same arterial access</li> <li>Lower cost</li> </ul>                                                                                                             |
| <ul> <li>Less reliable FFR/iFR assessments of<br/>borderline lesions</li> <li>Higher risk of haemodynamic instability<br/>due to AS</li> </ul>                                                                                                                                          | <ul> <li>More challenging and potentially<br/>compromised coronary access</li> <li>Less stability and support of the<br/>coronary guiding catheter</li> <li>Potential THV dislodgement</li> </ul>                                                                      | <ul> <li>Larger amount of contrast and higher risk<br/>of AKI</li> <li>Prolonged procedure</li> <li>Need for DAPT at the time of TAVI, hence<br/>increased bleeding risk</li> </ul> |



| Р    |
|------|
|      |
| N/A  |
| 0.55 |
| 0.77 |
| 0.25 |
|      |
| N/A  |
| 0.83 |
| 0.69 |
| 0.16 |
|      |

## Antithrombotic Therapy Post-TAVI +/- PCI

| Procedure                                     | No pre-existing indication for OAC                        | Concurrent indications for OAC                                                                                                       |
|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| TAVI alone                                    | Aspirin long-term                                         | (D)OAC long-term                                                                                                                     |
| + PCI for <u>chronic</u> coronary<br>syndrome | DAPT 1-6 months<br>(HBR: 1-3, LBR: 6)<br>ASA long-term    | Triple therapy (AAS-Clopidogrel-<br>(D)OAC) ≤1 week<br>(D)OAC + Clopidogrel for 1-6<br>months (HBR: 1-3, LBR: 6)<br>(D)OAC long-term |
| + PCI for <u>acute</u> coronary<br>syndrome   | DAPT for 6-12 months<br>(HBR:6, LBR: 12)<br>ASA long-term | Triple therapy (AAS-Clopidogrel-<br>(D)OAC) ≤1 week<br>(D)OAC + Clopidogrel for 6-12<br>months (HBR: 6, LBR: 12)<br>(D)OAC long-term |


Individual Risk Assessment: Bleeding vs. Ischemic

Most current TAVI patients: HBR

Hindricks G et al. Eur Heart J. 2021 Oct 21;42(40):4194 Van Gelder I. et al. European Heart Journal (2024) 45, 3314–3414 Vahanian A. et al. European Heart Journal (2022) 43, 561–632 Neumann F. European Heart Journal (2019) 40, 87–165

# **Coronary Access and TAVI**

The younger the patient we treat with TAVI, the higher the risk of future PCI indication given the longer life expectancy



- Evolution of CAD
  - Progression of CAD
  - Occurrence of ACS
  - Delayed coronary occlusion
- Rate may increase
  - Younger patients with longer life expectancy
  - More conservative strategy for asymptomatic lesions

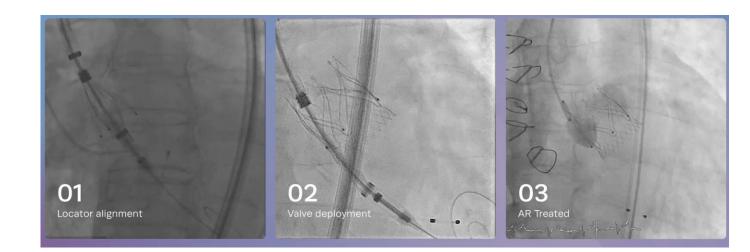
- Access to coronary arteries after TAVI
  - Related to risk of coronary artery occlusion per-TAVI

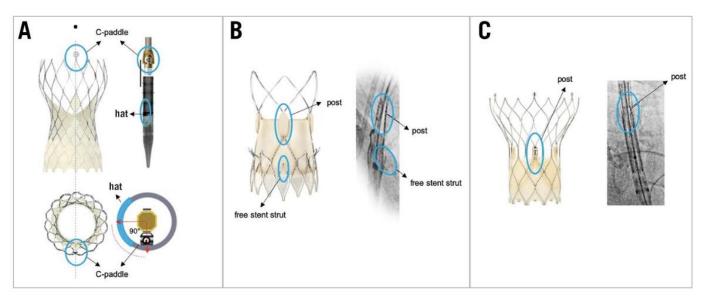
#### **PATIENT CHARACTERISTICS**

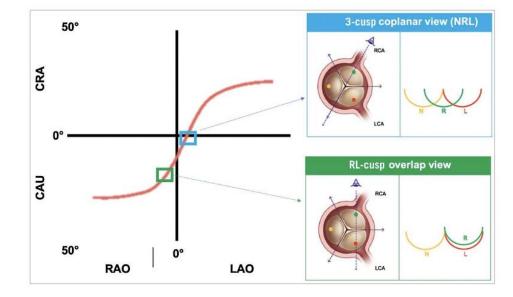
- LCA and RCA Height
- Sinus Sizes
- Height and width of STJ
- Calcifications
- Aortic Root Dilatation
- Aberrant Coronary Arteries

#### **TECHNICAL CHARACTERISTICS**

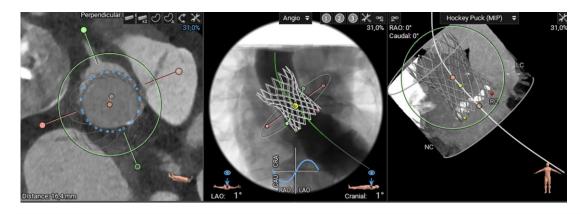
Devices


.

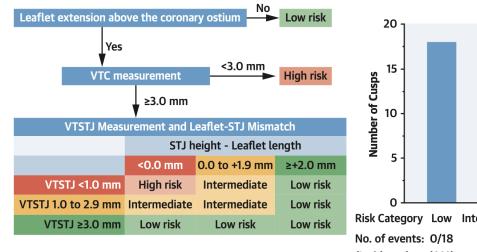

- BEV-SEB
- Frame/stent Design
- Cusp Alignment Markers
- Technique
  - Implant Height
  - Cusp Alignment

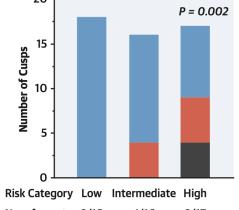

### THV Design/Position And Coronary Access: Possible Actions

### • THV Design


- Stent frame height
- Leaflet position (annular/supra-annular)
- Leaflet height with respect to recommended annular positioning
- Size of cells
- Implant position
- Commissural Alignment



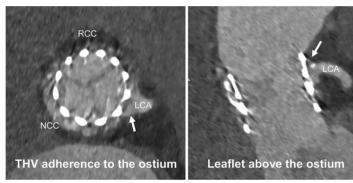


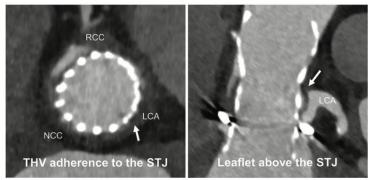

### **TAVI And Coronary Access: Evaluation**



Risk Stratification on Pre-TAVR CT, N = 51







4/16 9/17 (25%) (53%) (Incidence) (0%) No Coronary Obstruction Sinus Sequestration Both Ostial Obstruction and Sinus Sequestration

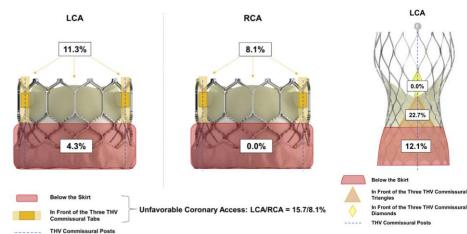
**Threatened Coronary Obstruction After TAVR** 

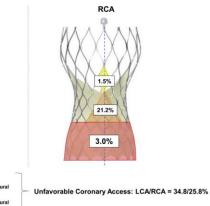
**Ostial Obstruction** 



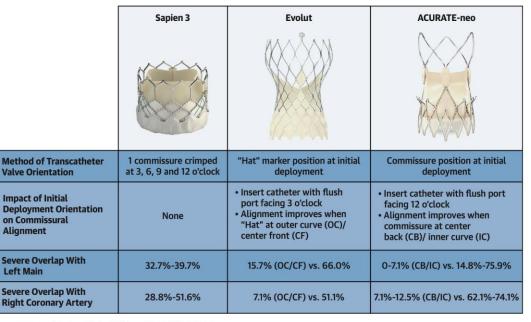
**Sinus Sequestration** 




Kitamura M et al. J Am Coll Cardiol Intv. 2022 Mar, 15 (5) 496–507.


#### Table 3. Feasibility of coronary access with different THV in available studies.

| Study author, year                    | Valve type (n)                                                                                 | ACS   | RCA CA<br>success    | RCA CA<br>selective | LCA CA<br>success     | LCA CA<br>selective | PCI, n;<br>success, % |
|---------------------------------------|------------------------------------------------------------------------------------------------|-------|----------------------|---------------------|-----------------------|---------------------|-----------------------|
| Blumenstein et al. 2015 <sup>55</sup> | SAPIEN XT (n=19)<br>CoreValve (n=10)<br>ACURATE (n=4)<br>Other (n=2)                           | 13.3% | 94.3%                | 77.1%               | 97.1%                 | 79.4%               | n=8; 100%             |
| Boukantar et al. 201766               | CoreValve (n=16)                                                                               | 43.8% | 58%                  | 16%                 | 75%                   | 44%                 | n=7; 85.7%            |
| Htun et al. 201767                    | CoreValve (n=28)                                                                               | 90.0% | 100%                 | 90%                 | 100%                  | 97%                 | n=29; 100%            |
| Zivelonghi et al. 2017 <sup>54</sup>  | Evolut R (n=25)<br>SAPIEN 3 (n=41)                                                             | 0%    | 100%                 | 94%                 | 98%                   | 97%                 | n=17; 100%            |
| Tanaka et al. 201961                  | CoreValve/Evolut (n=41)                                                                        | 56.5% | 50%                  | 31.3%               | 87.5%                 | 57.1%               | n=30; 93.3%           |
| Ferreira-Neto et al. 201953           | SAPIEN XT (n=28)                                                                               | 64.3% | 100%                 | 81.5%               | 100%                  | 82.6%               | n=13; 100%            |
| Couture et al. 202097                 | Evolut R/PRO (n=10)                                                                            | 10.0% | NA                   | 60%                 | NA                    | 40%                 | n=2; 50%              |
| Nai Fovino et al. 202052              | SAPIEN XT/3 (n=36)<br>CoreValve/Evolut R/Pro (n=8)<br>Jena (n=2)<br>Lotus (n=2)                | 35.0% | 100% IA<br>vs 75% SA | 94% IA<br>vs 25% SA | 100% IA<br>vs 100% SA | 97% IA<br>vs 50% SA | n=26; 96.2%           |
| Barbanti et al. 2020⁵¹                | SAPIEN (n=96)<br>Evolut (n=123)<br>ACURATE (n=72)<br>Portico (n=9)                             | 0%    | 96.0%                | 88.0%               | 95.3%                 | 68.3%               | n=0; 0%               |
| Kim et al. 202198                     | SAPIEN (n=201)<br>ACURATE (n=62)<br>CoreValve/Evolut (n=140)<br>Portico (n=16)<br>Other (n=30) | 100%  | 98.3%                | 71.6%               | 99.3%                 | 79.3%               | n=243; 91.4%          |

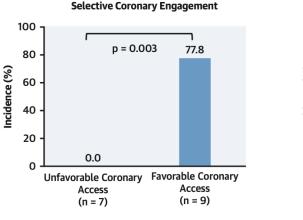

ACS: acute coronary syndrome; IA: intra-annular; CA: coronary access; LCA: left coronary artery; PCI: percutaneous coronary intervention; RCA: right coronary artery; SA: supra-annular; TAVI: transcatheter aortic valve implantation; THV: transcatheter heart valve

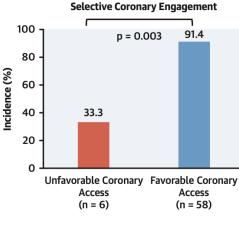
Tarantini G. et al. EuroIntervention. 2023 May 15;19(1):37-52.





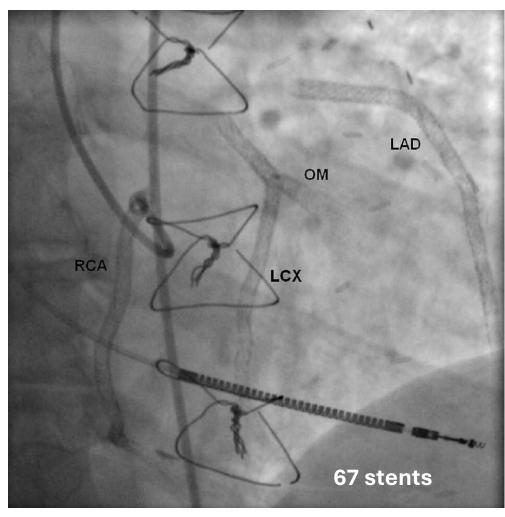


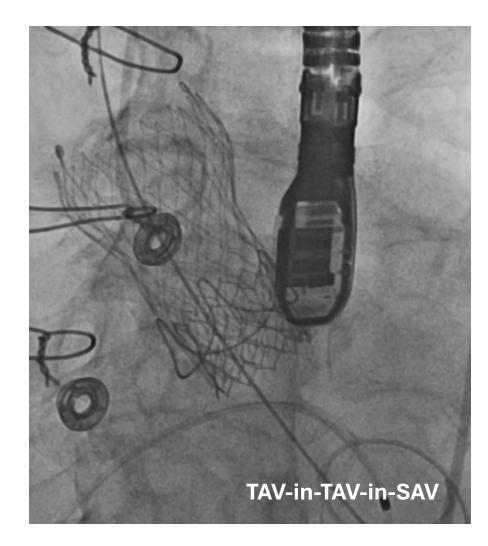




Tang, G.H.L. et al. J Am Coll Cardiol Intv. 2020;13(9):1030-42.

#### Success Rates of Selective Coronary Engagement in Evolut R/PRO and Sapien 3

Evolut R/PRO


Sapien 3

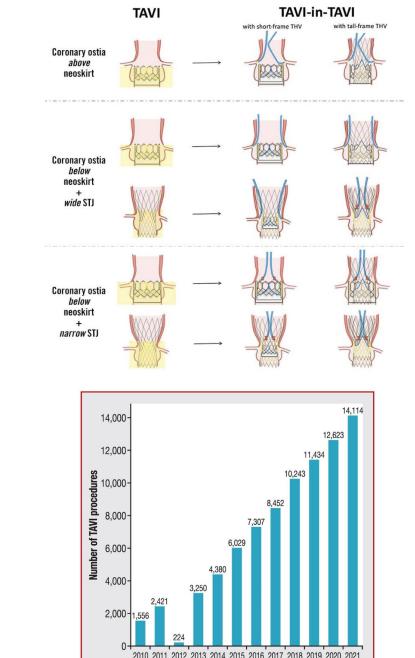





T. et al. J Am Coll Cardiol Intv. 2020;13(6):693-705.

## Conclusions






Khouzam, R et al. JACC. 2010 Nov, 56 (19) 1605

Haroian N, NY Valves 2024, https://www.tctmd.com/slide/tav-tav-sav-how-plan-and-execute

## Conclusions

- Selective CA remains the main diagnostic modality
- Role of invasive HD assessment and CT to be defined
- CT pre-planning before CA?
- Many factors can influence timing of PCI
- Antithrombotic treatment related to bleeding risk
- Coronary access important to consider
  - Role THV design and position Role of imaging Screening
- Matter of debate... for years to come!

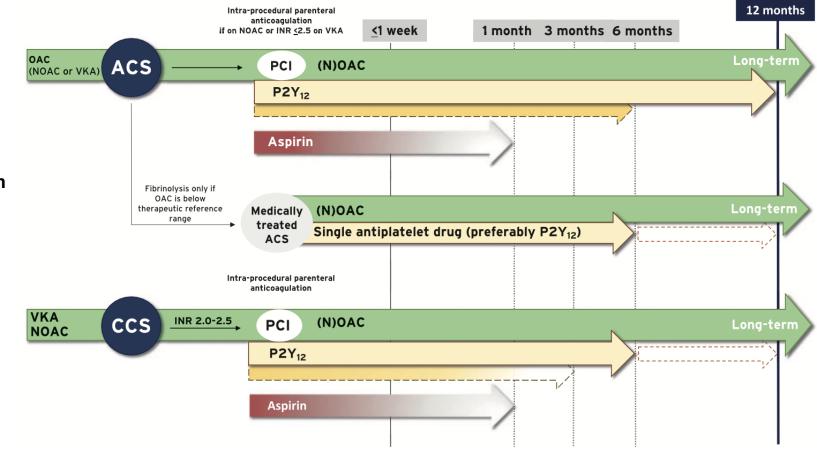


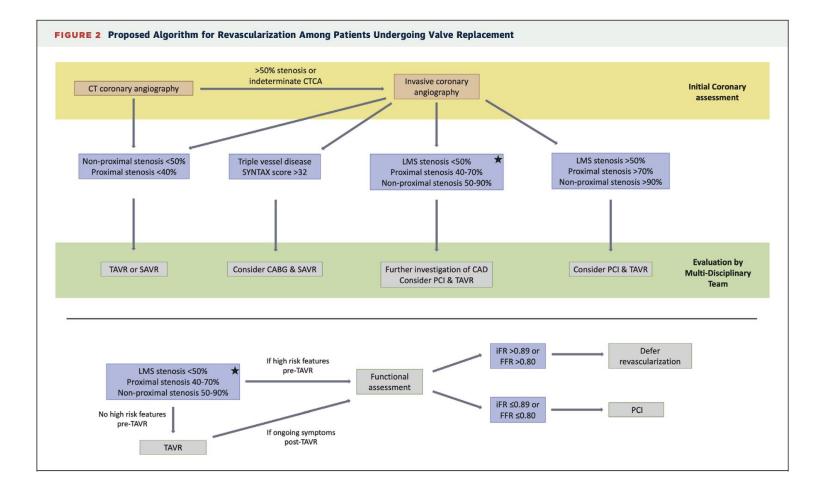
Year of TAVI procedures

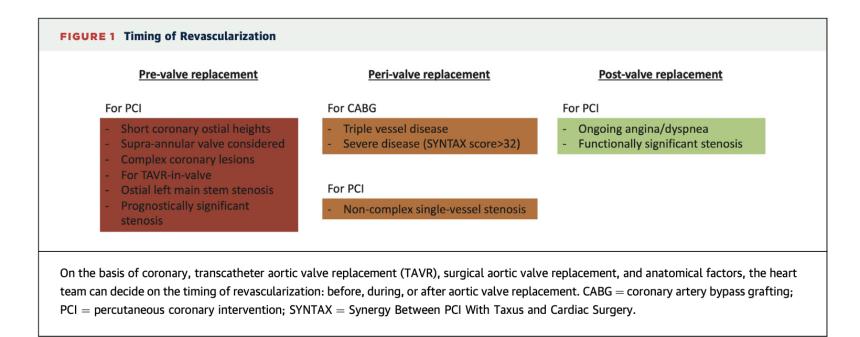
Tarantini G. et al. EuroIntervention. 2023 May 15;19(1):37-52.

Didier R. et al. Archives of Cardiovascular Disease 115 (2022) 206-213



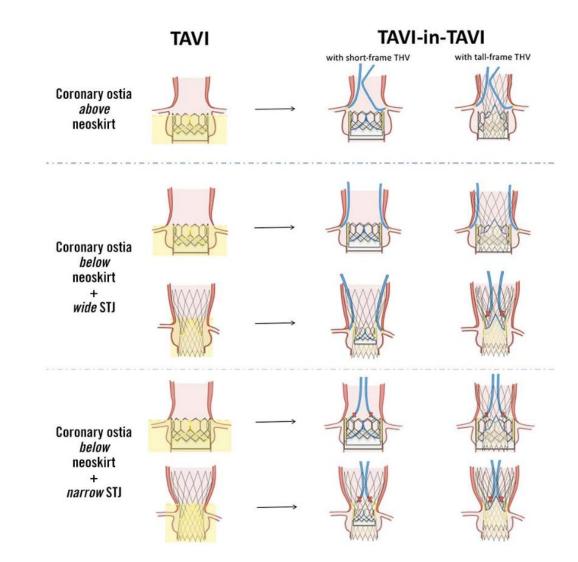

# Thank you!




## Antithrombotic Therapy Post-TAVI and PCI

- Post-TAVI:
  - Single Antiplatelet Therapy (SAPT): Aspirin
  - OAC if indicated
- Post-PCI
  - Chronic vs. Acute
  - Indication for OAC vs. no indication
  - Bleeding risk vs. Ischemic risk
  - Bleeding risks: >75 years-old, other risk factors
  - DAPT for 3 months
  - If OAC indicated: Triple thearpy 1 week, OAC + SAPT 6 months, then OAC
  - If very high bleeding risk: SAPT + OAC 1-3 months, then OAC



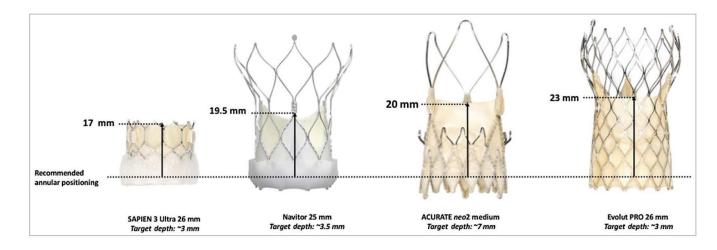


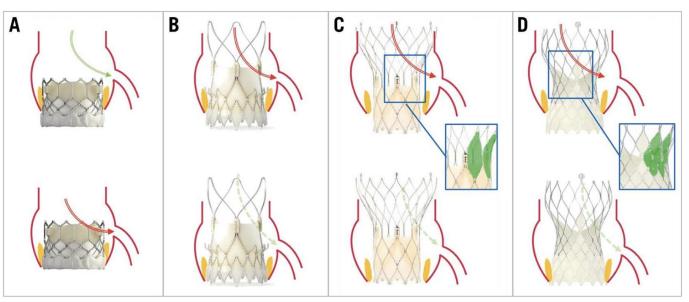



## Difficulty with re-Do

- More and more complex
- CT, imaging, neo-sinus,..;
- More frequent
- TAV-in-SAV, TAVI-in-TAVI




**Figure 8.** Coronary access after TAVI-in-TAVI with different combinations of SAPIEN and CoreValve/Evolut transcatheter heart valves, depending on aortic root anatomy. STJ: sinotubular junction; TAVI: transcatheter aortic valve implantation. Adapted with permission from<sup>90</sup>.


## THV Design /Position And Coronary Access

### • THV Design

- Stent frame height
- Leaflet position (annular/supraannular)
- Leaflet height with respect to recommended annular positioning
- Size of cells
- Implant position
- Commissural Alignment







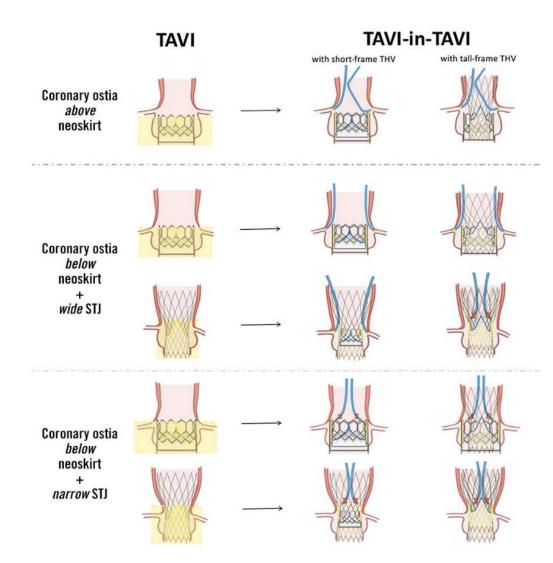
Cas stent before

Cas stent after

### Plan risk of difficult access

- Scan: neo sinus
- Simulation ? IA?

### Risk of occlusion


- Chimney etc
- basilica

### How to assess before

- access
- Risk of occlusion

• Stents 1-3 mois ok

• Pas besoin de coro dans 20-30% des



**Figure 8.** Coronary access after TAVI-in-TAVI with different combinations of SAPIEN and CoreValve/Evolut transcatheter heart valves, depending on aortic root anatomy. STJ: sinotubular junction; TAVI: transcatheter aortic valve implantation. Adapted with

### Conclusions

### guidelines

- If risk of occlusion
  - Techniques
    - Chimney
    - Stent in place

Anticipated complex access after TAVI : favors PCI before???

### Coronary re-access after TAVI and re-do TAVI

### Commissural alignment

Tarantini G. et al. EuroIntervention. 2023 May 15;19(1):37-52.

## Conclusion

• Matter of debate

- Favours PCI
- Difficulty of reintervention
- Prognosis:
- Symptoms of angina: valve or artery?
- Lesion characteristic: if high grade risk of restenosis, thrombosis
- Keep it simple!
- Hemodynamic assessment

- Favours Medical
- Symp

# Timing of PCI

| PCI before TAVI                                                                                                                                                                                                                                                                                                                                   | PCI after TAVI                                                                                                                                                                                                                                                                                     | Combined PCI and TAVI                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Easier coronary access         <ul> <li>(especially for self-expanding<br/>THV with a supra-annular<br/>leaflet position)</li> </ul> </li> <li>Lower risk of ischaemia-<br/>induced haemodynamic<br/>instability (i.e., during rapid<br/>pacing)</li> <li>Reduced contrast use<br/>compared with concomitant<br/>PCI and TAVI</li> </ul> | <ul> <li>More reliable FFR/iFR of<br/>intermediate lesions</li> <li>Lower risk of haemodynamic<br/>instability during complex<br/>PCI (i.e., with rotational<br/>atherectomy and impaired LV<br/>function)</li> <li>Reduced contrast use<br/>compared with concomitant<br/>PCI and TAVI</li> </ul> | <ul> <li>Use of the same arterial access</li> <li>Lower cost</li> </ul>                                                                                                                 |
| <ul> <li>Less reliable FFR/iFR<br/>assessments of borderline<br/>lesions</li> <li>Higher risk of haemodynamic<br/>instability due to AS</li> </ul>                                                                                                                                                                                                | <ul> <li>More challenging and<br/>potentially compromised<br/>coronary access</li> <li>Less stability and support of<br/>the coronary guiding<br/>catheter</li> <li>Potential THV dislodgement</li> </ul>                                                                                          | <ul> <li>Larger amount of contrast and<br/>higher risk of AKI</li> <li>Prolonged procedure</li> <li>Need for DAPT at the time of<br/>TAVI, hence increased<br/>bleeding risk</li> </ul> |

- Impact prognosis
  - Procedural risk
    - Occlusion, plaque destabilization, acute ischemia
  - Post-procedural prognosis
    - ACS, symptoms, reinterventions

- What we want to achieve:
- Show a case: difficult canulation
- Show a case complex pci
- Show a case