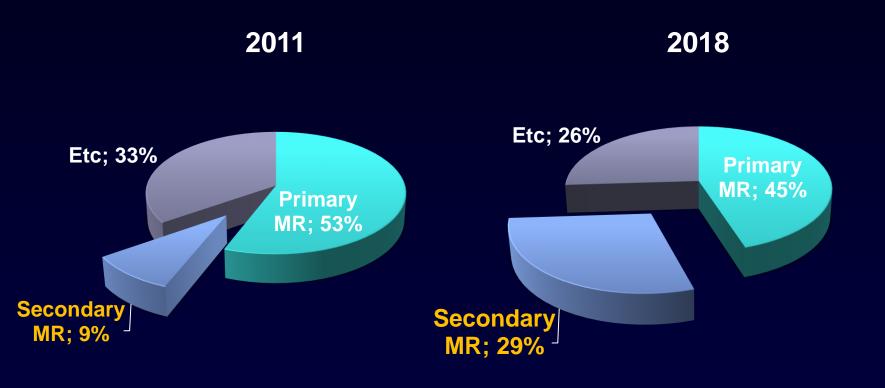
EUROVALVE & Structural Cardiomyopathies Solutions and dilemmas in the management of secondary mitral regurgitation

5 Thoughts on Assessment of Mitral Regurgitation

Geu-Ru Hong, MD. PhD

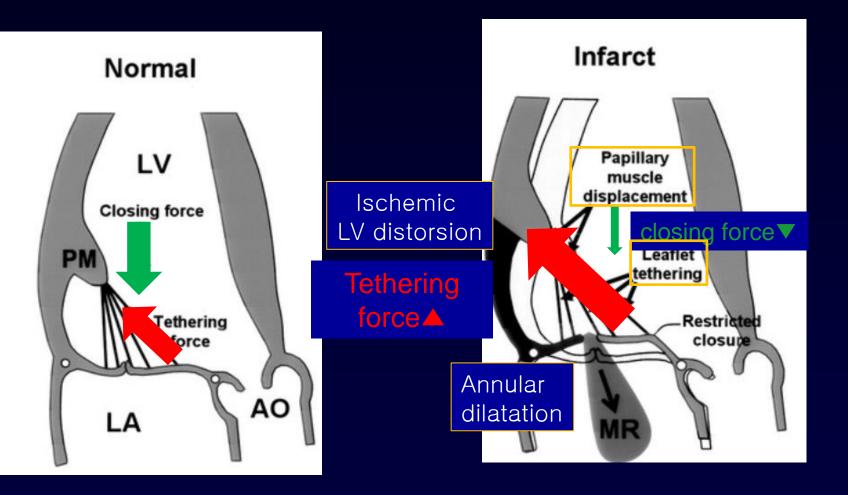
Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea Thought 1

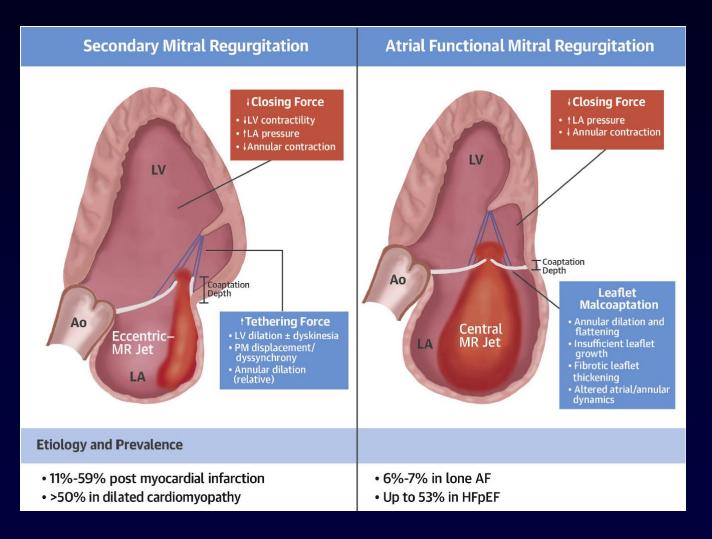

What is etiology & mechanism?

Secondary MR

- Distortion of the MV apparatus due to LV and/or LA remodeling
- One or both of the MV leaflets are pulled apically into the LV as a result of the outward displacement of the papillary muscles.
- The leaflets are apically displaced, tethered, and may have restricted mobility, especially the posterior leaflet.

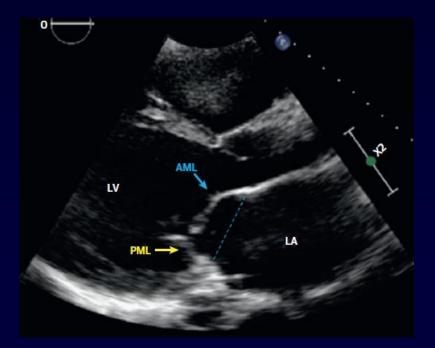
2017 ASE Guideline for Native Valvular Regurgitation


Increasing Prevalence of FMR


EuroHeart Survey

EORP VHD II Registry

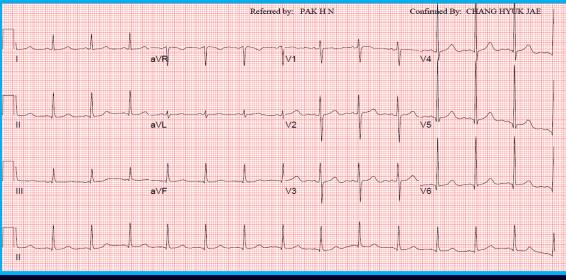
Imbalance between Tethering & Closing force

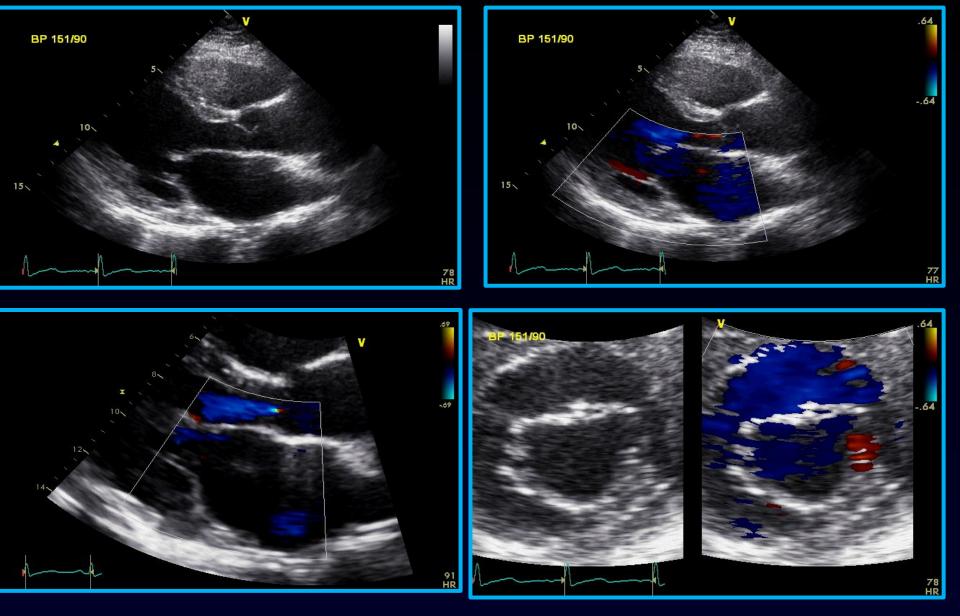

Atrial vs. Ventricular Functional MR

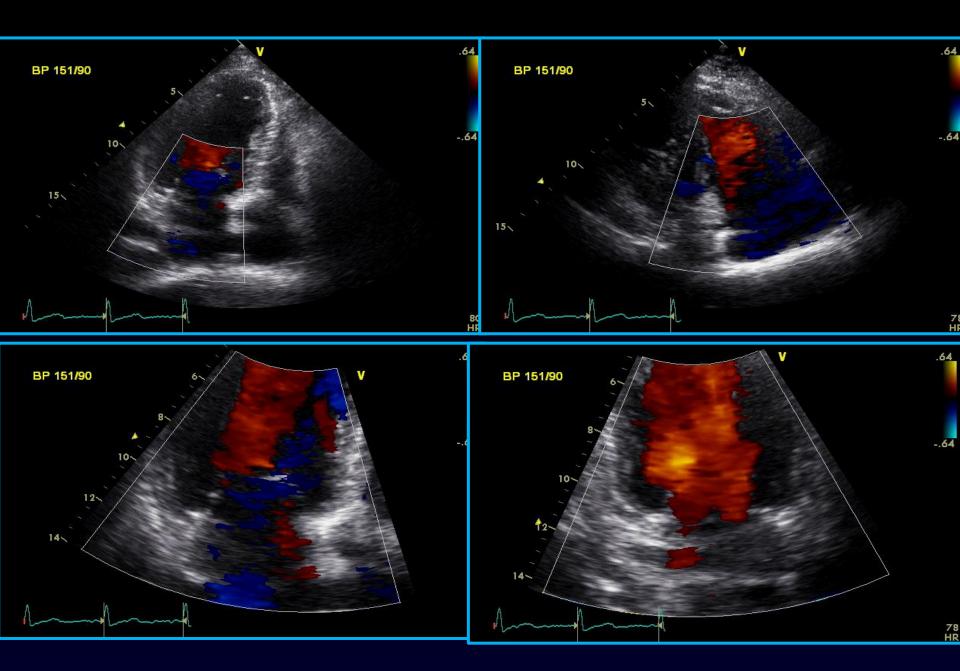
J Am Coll Cardiol 2019;73:2465–76

Pitfalls in assessing MR Etiology

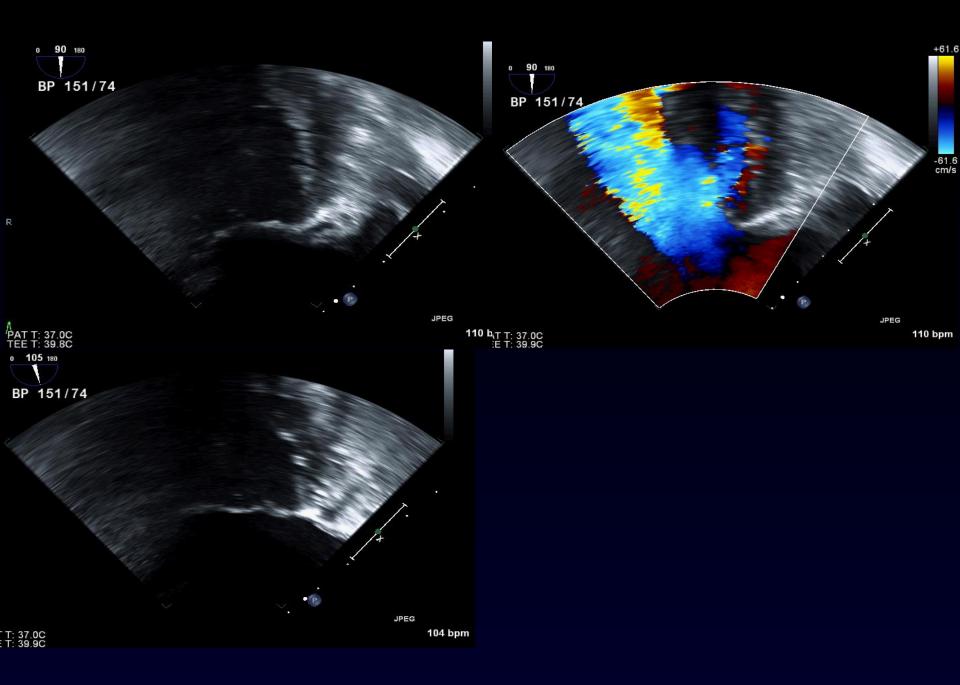
 The posterior leaflet is severely restricted/tethered, anterior leaflet overrides it with an obvious gap. This is pure secondary MR.


Thought 2

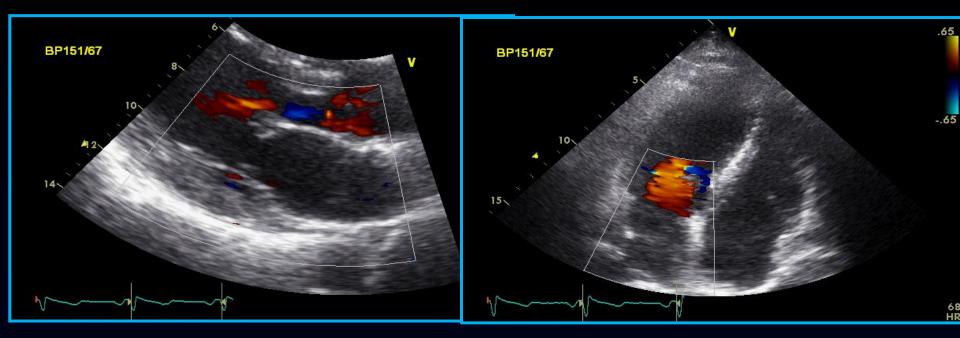

Severe MR can be reversible?


Case: 49 Year-old Woman

- C.C. : DOE (NYHA II) and palpitation
 Generalized edema
- D.. : 1 year
- PHx. : HTN (-) DM (-) Dyslipidemia (-)
- Referred to out-patient clinic
- BP : 150/90 mmHg HR 91 bpm
- PEx. : Systolic murmur at apex



LVEDD/SD 60/43 mm, LVEF 58 % E/e' 16, RVSP 60 mmHg



no	동국성	14.04.08 17:20		창고치
1	백혈구수 wbc count	6.87	4~10	*1000
2	혈색소(광전비색법)hb	▼ 7.8	12~16	g/dl
3	헤마토크리트 hct	▼ 25.4	36~48	%
4	적혈구수 rbc count	▼ 3.35	3.82~5.4	*1000000
5	혈소판수 platelet count	163	150~400	*1000
6	MCV	▼ 75.8	80~100	fl
7	MCH	▼ 23.3	26~33	pg
8	MCHC	▼ 30.7	31~35	g/dl
9	RDW	▲ 14.9	11.5~14.5	fl
10	mpv	9.9	~	%
11	pdw	▼ 11.0	12~18	fl
12	Seg.neutrophil	63.1	50~70	%
13	Eosinophil	▲ 5.7	1~4	%
14	Basophil	0.4	0~1	%
15	Lymphocyte	▼ 24.5	25~40	%
16	Monocyte	6.3	3~8	%

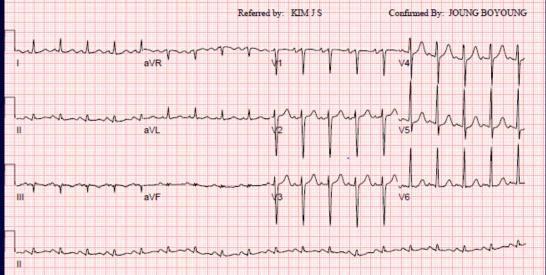
2014/4/6 7.8 2014/4/21 8.7 2014/5/22 10.2 2014/7/3 13.1

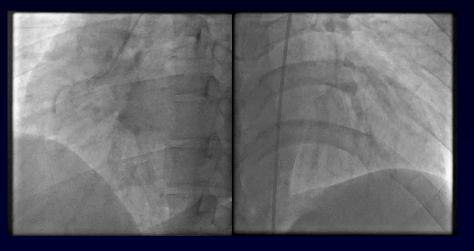
Adenomyosis & Hypermenorrhea

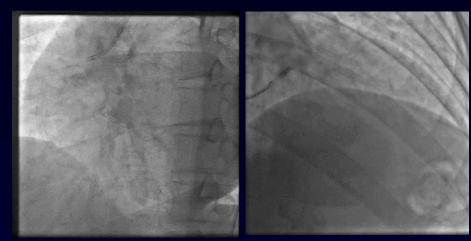
→ OBGY → IUD insertion

Decreased MR to trivial

Normalized LV chamber size and normal EF Normalized estimated LV filling pressure Normalized RVSP


Cause of Dynamic MR


- Hypertension
- Volume status
- Anemia
- Hyperthyroidism
- CAD
- Arrhythmia
- HCMP


CASE: 78 YO Man

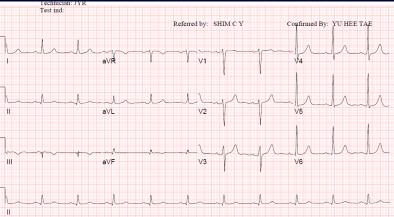
- C.C. : DOE and Orthopnea (NYHA III)
- P.Hx : STEMI S/P PTCA with stent at RCA (2017.5) and LAD (2017.10) HTN (+) DM (-), Alcohol (+) social, Smoking (+) ex S/P Thoracentesis 2017.10
- V.S. : BP 116/80 mmHg, HR 104 BPM
- LAB. : Hb 14.9, BUN/Cr 33.4/1.03, NT-proBNP 3,191 pg/mL

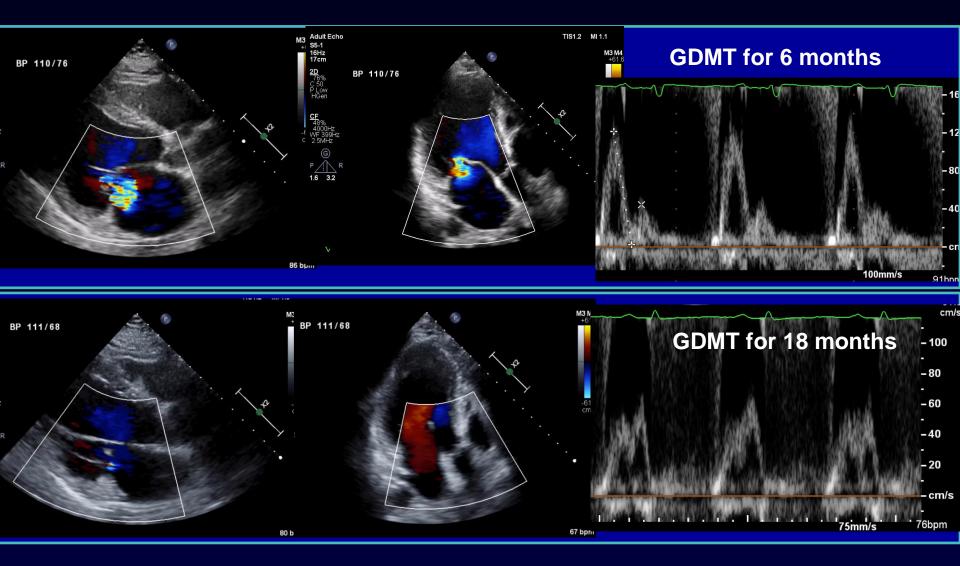
2017.5

2017.5

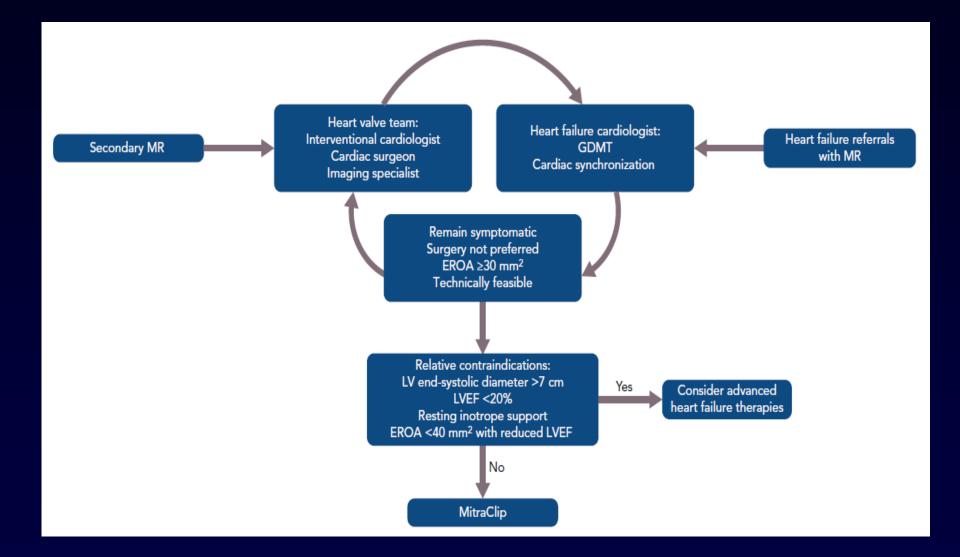
2017.10

LVEDD/ESD 65/59 mm, LVEF 21%, EROA 0.63 cm2, RV 63 ml, RVSP 78 mmHg


Medications (outside hospital)


Aspirin 100 mg qd Clopidogrel 75 mg qd Sigmart 5 mg tid Rosuvastatin 20 mg qd Furosemide 40 mg bid Spironolactone 25 mg qd

Medication add-on
Ivabradine 5 mg bid → 7.5 mg bid
Carvedilol 3.125 mg bid
Valsartan → Sacubitril/Valsartan 50 mg bid


NYHA I, NT-proBNP 187 pg/ml

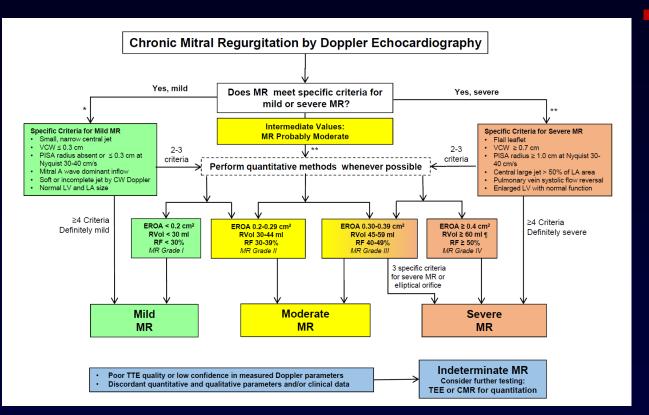
Management of Secondary MR

Thought 3

How severe?

- Quantification of DMR & FMR is same?
- What is limitation of current quantification tool?

How to assess FMR

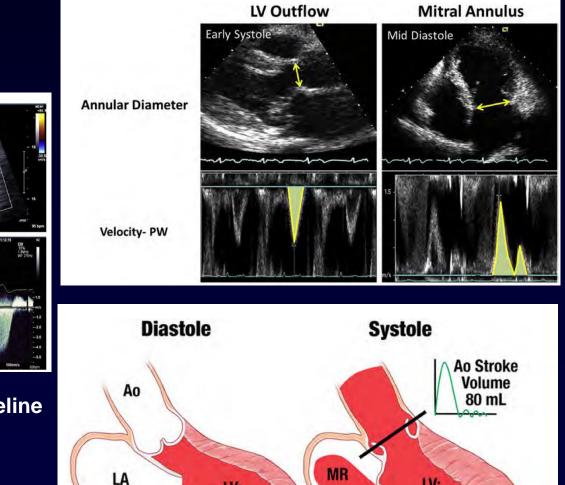

	Primary MR*	Secondary MR*					
	i nindi y witt	Regional LV dysfunction	Global LV dysfunction				
Etiology	Myxomatous or calcific leaflet degeneration	Inferior myocardial infarction	Nonischemic cardiomyc anterior or multi infarction				
LV remodeling	Global, if severe chronic MR	Primarily inferior wall	EXPER.				
LA remodeling	Moderate to severe if chronic MR	Variable	I EN.				
Annulus	Dilated, preserved dynamic function	Mild to no dilation	, nattened, nondynamic				
Leaflet morphology: • Thickening • Prolapse or flail • Calcification	Moderate to severe if chronic MR Dilated, preserved dynamic function Yes/moderate, severe Usually present Variable None None None None None None None Non	from the	No/mild No No/mild				
Tethering pattern	None		Symmetric				
Systolic tenting	None	ureased	Markedly increased				
Papillary muscle distance	Jati	Increased posterior papillary- intervalvular fibrosa distance	Increased interpapillary muscle distance				
MR jet direct		Posterior	Usually central				
NeN	aniform if flail or with calcific degeneration	Density usually uniform throughout systole	Biphasic pattern, with increased density in early- and late-systolic flow and midsystolic dropout				
PIS	Often hemispheric	Often not hemispheric	Often not hemispheric; may be biphasic				
*Primary and secondary MR may coexist.							

J Am Soc Echocardiogr. 2017 Apr;30(4):303-371

Evaluation of Secondary MR

- Echocardiography
 - Vena contracta width, PISA
- Severe in "Secondary MR"
 - EROA > 20mm², RV > 30ml \rightarrow >40mm2, >60ml
- Assessment of LV systolic function is complicated
- Stress echo for dynamic MR
 - Exercise induced EROA increase > 13mm²
 - Poor prognosis (death, hospitalization)

Semi-quantification

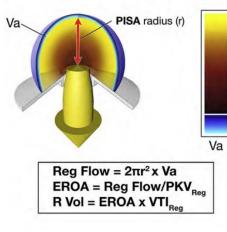

- Flail leaflet
- Vena contracta
- PISA radius
- Central jet area
- PV systolic flow reversal
- Enlarged LV
- Mitral inflow

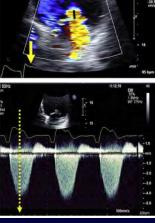
Quantification ERO, RV, RF

2017 ASE guideline

MR quantification Volumetric methods

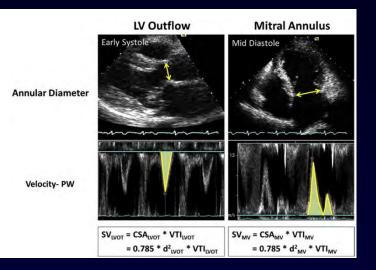
PISA methods

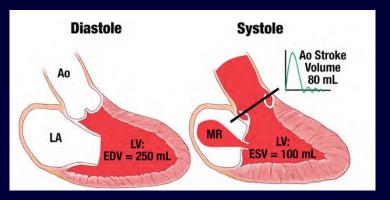



LV: ESV = 100 mL

LV:

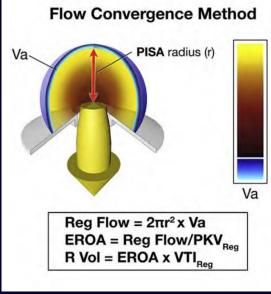
EDV = 250 mL


Flow Convergence Method



2017 ASE guideline

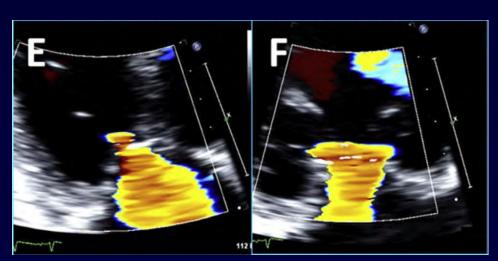
Limitation in MR quantification

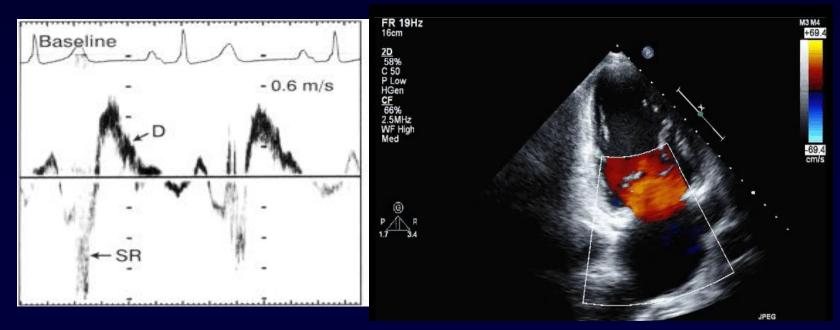



- Assumption
 - Not combined multivalvular

disease

- Round-shape LVOT and MA
- Small errors in each measurement can magnify error
- PW Doppler method and LV volume method frequently showed different results


Limitation in MR quantification


Assumption in PISA

- Hemispheric
 proximal
 convergence zone
 with radius R
- Regurgitation is not dynamic

Pulmonary vein reversal flow

- Simple and useful method for evaluation of "severe" MR
- Not available in every patient
- Influenced by direction of flow, LA pressure and cardiac rhythm (AF)

FMR is different with DMR

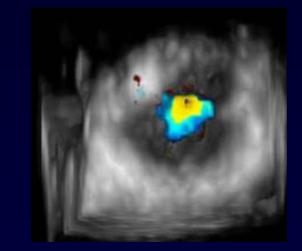
FACT 1: Patients with EROA > 0.2 cm² have two-fold increase in mortality risk and four-fold increase in the risk of HF.

Study (Ref. #)	N	Type of Study	LVEDV, ml	LVEF Cutoff	Etiology of MR	Echo Core Lab	Method of Grading MR	MR as Independent Predictor of Mortality
Grigioni et al. (10)	303	Single center, observational	NR	NR	Post-MI	No	QD, PISA	ERO $\ge 0.2 \text{ cm}^2 \text{ and ERO}$ 0.01-0.19 cm ²
Koelling et al. (11)	1,421	Single center, observational	NR	<35%	Secondary MR 59% ischemic	No	Jet area	Moderate/severe vs. none/mild
Trichon et al. (12)	2,057	Single center, observational	NR	<40%	59% ischemic	No	LV angiogram	Graded worsening for all degrees of MR
Lancellotti et al. (13)	98	Single center, observational	146 ± 18	<45%	Ischemic	No	PISA	ERO $\geq 0.2 \text{ cm}^2$

Theoretical considerations support the concept that lesser degrees of MR could have an adverse hemodynamic effect in secondary MR wherein the LV is already damaged.

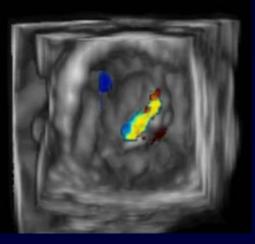
								transplant
Rossi et al. (17)	1,256	Multicenter, observational	NR	NR	Secondary MR 62% ischemic	No	VCW, PISA	$\begin{array}{l} \text{VCW} > 0.4 \text{ cm and ERO} \\ > 0.2 \text{ cm}^2 \end{array}$
Deja et al. (18)	1,209	Substudy of multicenter RCT	222 ± 69	<35%	Ischemic	No	ASE grading	Graded worsening for all degrees of MR

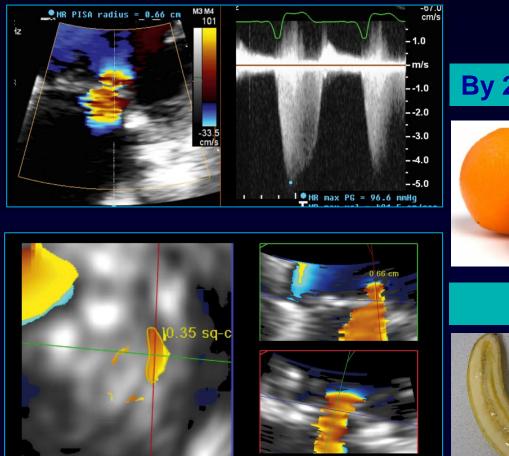
FACT 2: Measurement of PISA underestimates the true EROA due to crescent shape of PISA in secondary MR.


Grayburn PA et al. J Am Coll Cardiol 2014;2792-801.

Underestimation of EROA by PISA

EROA shape in secondary MR is usually "crescentic"


Kwan J et al. Circulation 2003. Little SH et al. JACC Imaging 2008. Yosefy C et al. Am J Cardiol 2009. Marsan NA et al. JACC Imaging 2009. Shanks M et al. Circ CV Imaging 2010. Garyburn PA et al. Circulation 2012



Functional MRPrimary MR (Prolapse)EROA highly elongated in FMR, more focal in MVPMatsumura V et al. Am Heart J

Matsumura Y et al. Am Heart J. 2008

An Example: EROA Underestimation by PISA

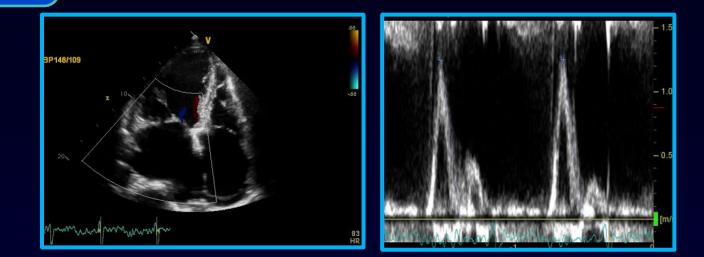
Underestimation

By 2D PISA radius and CW Doppler

$EROA = 0.18 \text{ cm}^2$

By 3D color Doppler

 $EROA = 0.35 \text{ cm}^2$


Grayburn PA et al. J Am Coll Cardiol 2014;2792-801.

Integrating multiple qualitative, semi-quantitative, and quantitative parameters

			everity*			
		Mild Moderate			Severe	
Structural						
MV morphology	None or mild leaflet abnormality (e.g., mild thickening, calcifications or prolapse, mild tenting)		Moderate leaflet abnormality or moderate tenting		Severe valve lesions (primary: flail leaflet, ruptured papillary muscle, severe retraction, large perforation; secondary: severe tenting, poor leaflet coaptation)	
Qualitativa Dana	lor	mal	Normal or mild dilated		Dilated [‡]	
Qualitative Doppler						
MR jet		ral, narrow, often Variable		Large central jet (>50% of LA) or eccentric wall-impinging jet of variable size		
Flow convergence	Not visible	, transient or small	Intermediate in size	e and duration	Large throughout systole	
			Dense but partial or parabolic		Holosystolic/dense/triangular	
Semi-Quantitati	ve					
Mitrol inflow			Intermediate		\geq 0.7 (>0.8 for biplane) [¶]	
Mitral inflow		minance (may be n LV dysfunction or AF)	Normal or systolic blunting [#]		Minimal to no systolic flow/ systolic flow reversal	
Mitral inflow**	A-wave do	minant	Variable		E-wave dominant (>1.2 m/sec)	
Quantitative ^{††,‡‡}						
EROA, 2D PISA (cm ²)		<0.20	0.20-0.29	0.30-0.39	≥0.40 (may be lower in secondary MR with elliptical ROA)	
RVol (mL)		<30	30-44	45-59 ^{††}	≥ 60 (may be lower in low flow conditions)	
RF (%)		< 30	30-39	40-49	≥50	

Semi-Quantitative

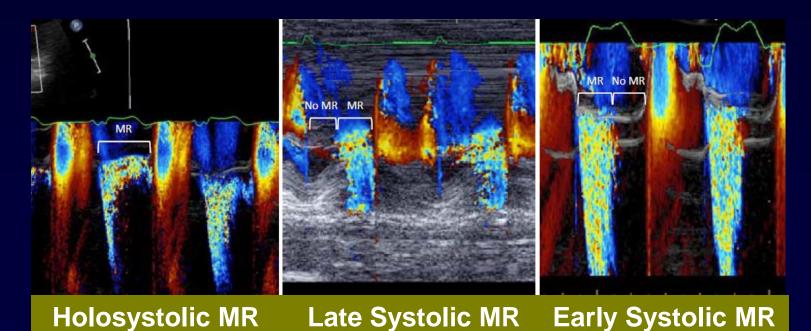
Mitral inflow

Advantages

Pitfalls

E velocity ≥ 1.2 m/sec : A simple supportive sign of severe MR (volume load) Depending on LV relaxation and filling pressures

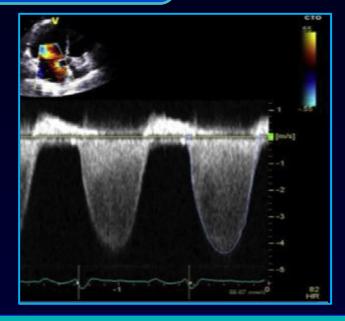
Dominant A-wave inflow pattern virtually excludes severe MR

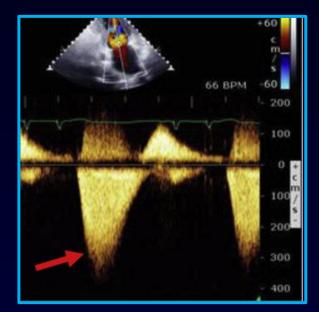

High E velocity not specific for severe MR in secondary MR, atrial fibrillation and mitral inflow stenosis

Qualitative Doppler

Duration of MR is Important

Usually Not Severe

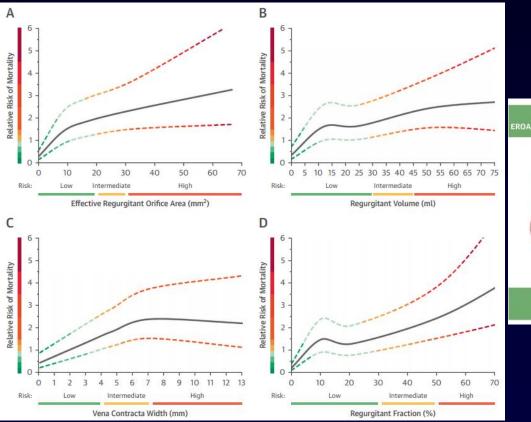

MR limited to late systole (MVP) MR limited to early systole (Ventricular dyssynchrony) Single frame measures (VC or PISA) can overestimate

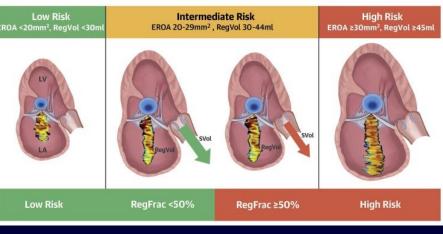


Qualitative Doppler

Shape & Density

CWD jet




Advantages

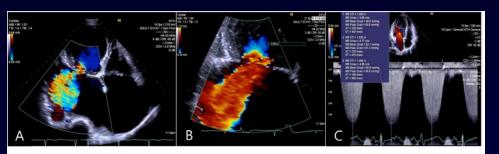
Pitfalls

Simple	Qualitative
Density is proportional to the number of RBCs reflects the signal	Perfectly central jets may appear denser than eccentric jets of higher severity
Faint or incomplete jet is compatible with mild MR	Density is gain dependent
A triangular contour denotes a large regurgitant pressure wave and hemodynamic significance	A contour with a early peak velocity is not sensitive for severe MR

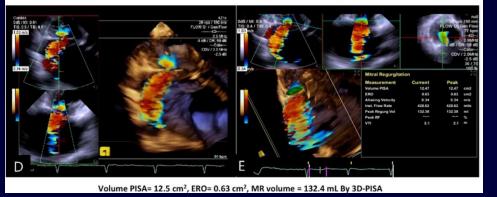
Grading Functional MR

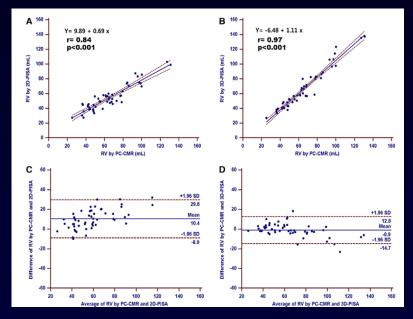
J Am Coll Cardiol 2019;73:2506–17

Thought 4


Is there any solutions for FMR assessment?

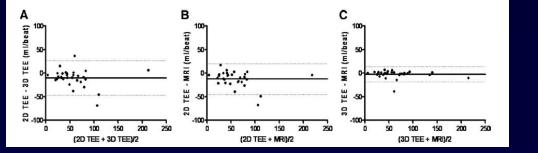
3D MR quantification


Valvular Heart Disease


Differential Effect of 3-Dimensional Color Doppler Echocardiography for the Quantification of Mitral Regurgitation According to the Severity and Characteristics

Jaehuk Choi, MD*; Ran Heo, MD*; Geu-Ru Hong, MD, PhD; Hyuk-Jae Chang, MD, PhD; Ji Min Sung, PhD; Sang Hoon Shin, MD; In Jeong Cho, MD; Chi-Young Shim, MD, PhD; Namsik Chung, MD, PhD

PISA radius= 0.89 cm, ERO= 0.40 cm², MR volume= 59.4 mL By 2D-PISA



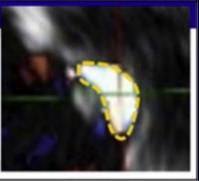
Circ Cardiovasc Imaging. 2014;7:535-544.


Quantitative Assessment of Mitral Regurgitation Comparison Between Three-Dimensional Transesophageal Echocardiography and Magnetic Resonance Imaging

Miriam Shanks, MD; Hans-Marc J. Siebelink, MD, PhD; Victoria Delgado, MD; Nico R.L. van de Veire, MD, PhD; Arnold C.T. Ng, MBBS; Allard Sieders, MD; Joanne D. Schuijf, PhD; Hildo J. Lamb, MD, PhD; Nina Ajmone Marsan, MD; Jos J.M. Westenberg, PhD; Lucia J. Kroft, MD, PhD; Albert de Roos, MD, PhD; Jeroen J. Bax, MD, PhD

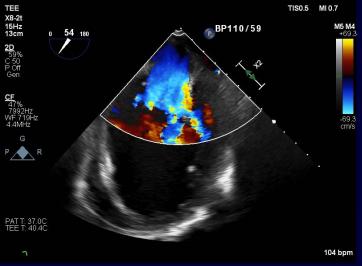
Step 1

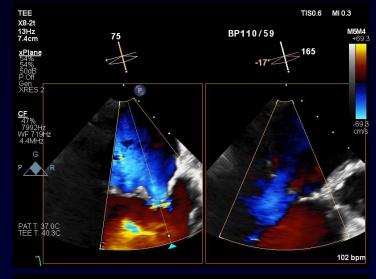
Select the systolic frame depicting the regurgitant jet with the largest vena contracta


Step 2

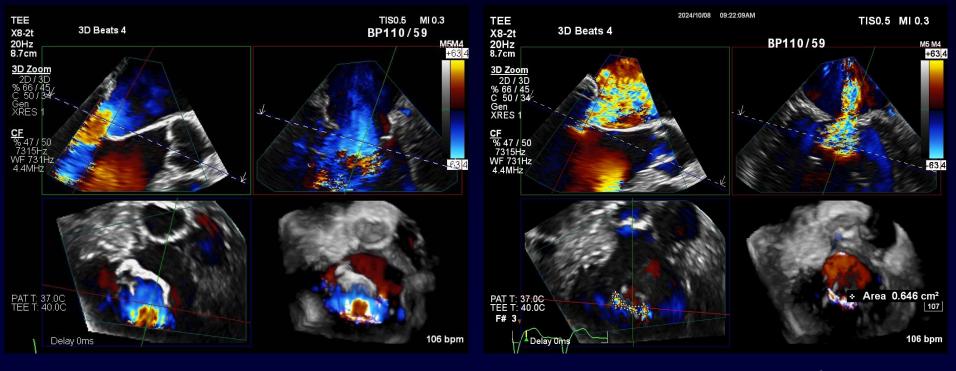
Rotate the 3D dataset to identify the 2 longaxis orthogonal planes, and define the short axis cut plane at the vena contracta of the regurgitant jet


Step 3


In a zoomed view, manually trace the VCA perimeter along the Color/Tissue (B-Mode) interface




700. J Am Coll Cardiol Intv 2019;12:582–91


Circ Cardiovasc Imaging. 2010;3:694-700.

3D VC area: 0.64cm²

(CrossMark

ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

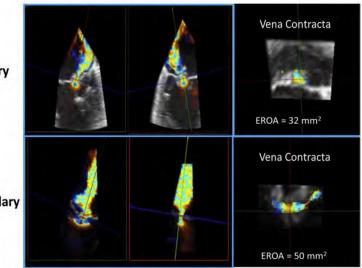
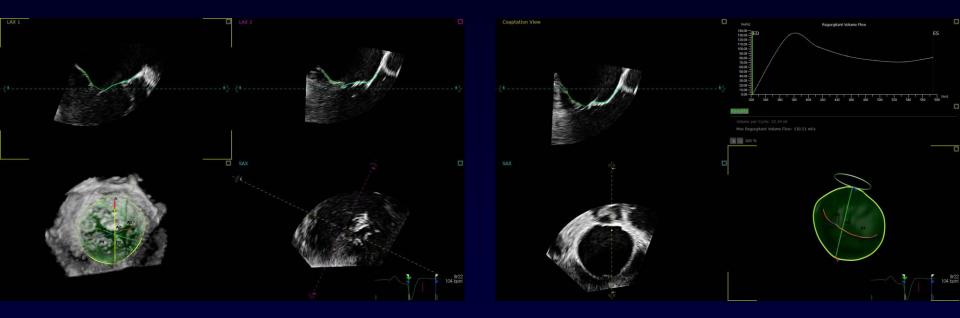
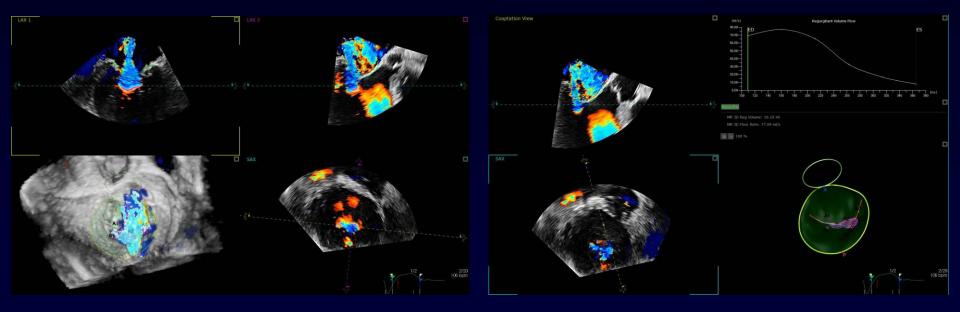

A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

Table 7 Echocardiographic and Doppler parameters for grading MR severity by TEE or TTE after transcatheter MV interventions'


Parameter	Mild	Moderate	Severe	
Structural				
Morphology	Device appropriately positioned/expected or normal valve motion	No specific criteria	Abnormal device position/flail valve (single leaflet detachment, dehiscence, incomplete TMVR expansion etc.)	
LA and LV volumes	Reduction in size from baseline or normalization	Minimal change	Enlarged with no change/ worsening from baseline, particularly in primary MR	Primary
Qualitative				Sec. Sec.
Color Doppler jet (size, number, eccentricity)	One or two small, narrow jets	More than mild but does not meet severe criteria	Large central jet/multiple jets/ eccentric jet(s) of any size wrapping around LA	
Flow convergence size [†]	None or small	Intermediate	Large	
Mitral inflow pattern	A-wave dominant	No specific criteria	No specific criteria	
Pulmonary vein flow pattern [‡]	Normal	Blunted systolic flow	Systolic flow reversal	
CW Doppler of MR jet (density, contour)	Faint, parabolic contour	No specific criteria	Dense, triangular contour	
Semi-quantitative				
Vena contracta width (cm)	Single jet with VCW \leq 0.3	Single jet with VCW 0.4-0.6	Any jet with VCW ≥0.7 or ≥2 moderate jets	Seconda
Quantitative				
Vena contracta area by 3D planimetry (cm ²) [§]	Single jet with VCA < 0.2	Single jet with VCA 0.2-0.39	Any jet with VCA ≥0.4 or ≥2 moderate jets	
EROA by PISA (cm ²)	<0.2 Not recommended after edge to- edge repair or in PVR	0.2-0.39 Not recommended after edge- to-edge repair or in PVR	≥0.4 Not recommended after edge- to-edge repair or in PVR	
Regurgitant volume (mL)	<30	30-59	≥60 [∥] (May be lower in low flow states)	
Regurgitant fraction (%)	<30%	30-49	≥50%	

Severe 3D VCA > 0.4 cm²

3D Quantitation in Primary and Secondary MR



Beyond the 3D Assessment : 4D assessment of MR (4D-CFQ)

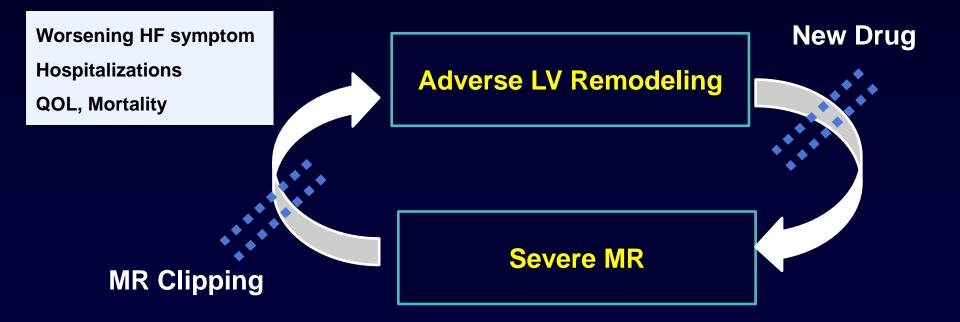
RV: 22.3ml, Maximal flow rate: 130.5ml/s

4D quantification of MR

3D MR regurgitant volume: 16.2ml

Thought 5

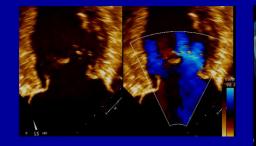
Assessment of FMR related with

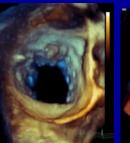

intervention.

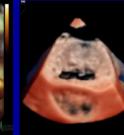
- Clipability

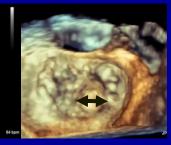
- Post intervention assessment

Consideration #1 before deciding MR Clipping

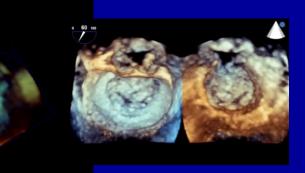

MR and Heart Failure

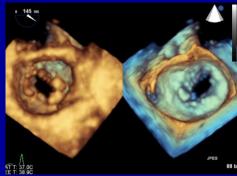

Characterization of Valve Morphology

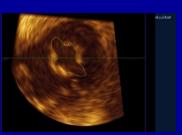

Location of pathology


Deep identations/Clefts

80

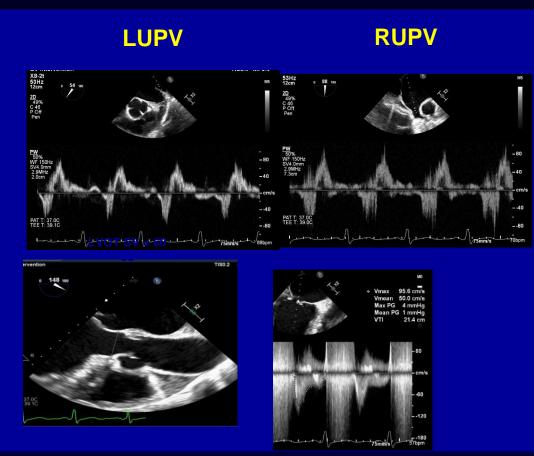



Flail width

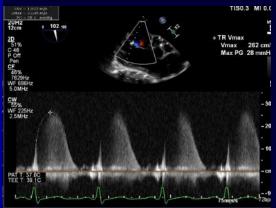


Flail gap

Severe Calcification / Small MVA


MVOA = 3.7 cm²

Characterization of MR jet


- MR jet location / direction
- MR jet number
- MR severity: 3D color Doppler VCA

Characterization of Hemodynamics

- Systolic flow reversal in right and left pulmonary veins
- Peak / mean diastolic gradients
- LVOT Stroke Volume

PASP

Take Home Messages

- Functional (2ndary) MR: sick heart → sick valve
- Main mechanism of FMR: Insufficient leaflet area relative to tha t demanded by tethering geometry ← "tethering"
- Accurate assessment of FMR is still challenging
- Integrate multiple qualitative, semi-quantitative, and quantitative ve echocardiographic parameters
- Special consideration is needed for evaluation of secondary M R including 3D VCA, 4D CFQ.
- Actively consider further testing (TEE or CMR) for evaluation o f MR if indicated.

2024 Ech360 Structural Heart Imaging (*Hybrid Meeting*) Nov 8-9, 2024 Mayfield resort, Seoul, Korea Directors: Geu-Ru Hong, Mani Vannan, Patrizio Lancellottii

Official website: Echo360.co.kr

ECHO 360

2024 Structural Heart Imaging with Asia Valve

Frontiers in Structural Heart Disease: **Unraveling the Complexities**

November 8(Fri) ~ 9(Sat), 2024 Mayfield Hotel, Korea

Directors / Co-Directors

Geu-Ru Hong (Korea)

Mani A Vannan (USA)

Patrizio Lancellotti (Belgium)

Seong-Mi Park (Korea)

Dae-Hee Kim (Korea)

Sung-Ji Park (Korea)

(USA)

(USA)

(Chile)

Dee Dee Wang (USA)

Eustachio Agricola (Italy)

Patrizio Lancellotti Martin Swaans (Netherlands)

(Hong Kong)

See Hooi Ewe

(Singapore)

Alex Lee

Hoang Dinh Nguyen (Vietnam)

Karlie Li-Tan Yang

(Belgium)

Shunauke Kubo

Suhaini B Kadiman (Malaysia)

Purevjargal Lkhagvasuren (Mongolia)

(China)

(Taiwan)

(Hong Kong)

Thank you for your attention

