

5 Thoughts on Anatomy and Morphology of the Mitral Valve

A.Berrebi, M.D.

HEGP – University of Paris Cité

Institut Mutualiste Montsouris, Paris

No Disclosure

Anatomy and Morphology of the Mitral Valve

Mitral Valve Anatomy: the essentials

Functional anatomy and Surgeon's needs

Anatomy and Morphology of the Mitral Valve

Mitral Valve Anatomy: the essentials

Functional anatomy and Surgeon's needs

Historical terminology

Mitral: an A-V Valve

M5

From Carpentier's Reconstructive Valve Surgery Elsevier Inc.© 2010

Normal Mitral Valve Anatomy

A-V Junction Atrio-valvular iunction Leaflet The Leaflets The suspension system and LV

Valve suspension system

Normal Mitral Valve Anatomy

A-V Junction

The Leaflets

Atrio-valvular iunction Leaflet

The suspension system and LV

Annulus Saddle Shape and Functional Ratio

Normal Mitral Valve Anatomy

A-V Junction

Atrio-valvular junction Leaflet

The Leaflets

The suspension system and LV

Mitral Leaflets

Aortic valve

Left coronary sinus Noncoronary sinus

Aortic mitral curtain

P1

Posterior commissure

Anterior leaflet

A2

P2

A3

P3

Posterior leaflet

Dimensions of Leaflets, from Carpentier ⁶						
	Anterolateral Commissure	Anterior Leaflet	Posteromedial Commissure	Posterior Leaflet		
Insertion length (mm)	12 ± 3.3	32 ± 1.3	17 ± 0.8	55 ± 2.2		
Height (mm)	8 ± 1	23 ± 0.9	8 ± 1	P1: 9 ± 1 P2: 14 ± 0.9 P3: 10 ± 1.2		
Coaptation zone height (mm)	4 ± 0.5	8 ± 1.1	4 ± 0.6	P2: 8 ± 0.9		

Leaflets

Normal Mitral Valve Anatomy

- A-V Junction

The Leaflets

Atrio-valvular junction / Leaflet

The suspension system and LV

Valve suspension

15 ± 0.5 mm
17 ± 0.2 mm
19 ± 0.4 mm
17 ± 0.5 mm
14 ± 2.9 mm
14 to 8 mm
8 ± 1 .7 mm
13 ± 0.2 mm
15 ± 0.1 mm

« Fan Shape » chordae: to optimize a full opening motion

Commissure

Indentation

Papillary muscle

Anterolateral papillary muscle

X

Posteromedial papillary muscle group

> Posteromedial papillary muscle

> > Branch of posterior descending artery

- common since vascularized by posterior descending artery only

3 Areas at risk in Interventions:

- **Circumflex artery** 1)
- **Aortic valve** 2)
- 3) **Bundle of His**

Anatomy and Morphology of the Mitral Valve

Mitral Valve Anatomy: the essentials

Functional anatomy and Surgeon's needs

A complex functional unit

DA VINCI'S ASTONISHING STUDY OF AN OX HEART

- The tricuspid or mitral heart valve between upper and lower chambers of the heart
- (2) Chordae tendineae. These tendons prevent the valve from opening in the wrong direction
- 3 Papillary muscles are finger-like projections from the wall of the heart
- 4 Sketch of the aortic or pulmonary valve. The Y figure shows how the cusps of the valve join when it is close
- 5 Trabeculae. These are muscular struts inside the heart

Ventricular

« Anatomy is a destiny » (B.Lytle)

The 3 « Golden Rules » of durable mitral valve reconstruction

Restore a large surface of coaptation

Preserve full leaflet motion

Remodeling annuloplasty +++

A common language with the « triad »

A.Carpentier: J Thorac Cardiovasc Surg 86 (3):323-37, 1983

Myxomatous Disease, Flail Leaflet, Partial-Flail, Valve Prolapse Syndrome, Billowing, Floppy valve

Echo

Etiology

The Cause of **Valve Disease**

Lesions		The Result of the Disease Process		
Dysfunction		The Result of the Lesions		
	Etiology	Lesion	Dysfunction	
Echo	++	+	+++	
Surgeon	++	+++	÷	

Dysfunction

2D for Carpentier's classification (leaflet motion)

Type I Normal leaflet motion Type II Increased leaflet motion

3D for segmental analysis (location of dysfunction)

Type IIIa Restricted leaflet motion (systole and diastole)

Type IIIb Restricted leaflet motion (systole)

From Carpentier's Reconstructive Valve Surgery Elsevier Inc.© 2010

Secondary MR: different phenotypes Type IIIb (++) Type II

Type I

AFMR

Pure annular dilation

MR jet direction is often central but may be eccentric.

VFMR

MR jet direction is central or eccentric.

VFMR

Acute PPM Rupture

Chronic PPM Elongation

Type IIIb: from a ventricular disease to a valvular dysfunction

Type IIIb P3 (courtesy of D.Adams)

Conclusion : 5 thoughts on mitral anatomy and morphology

- **1** Anatomy is critical to understand for imagers (landmarks for proper 3D orientations)
- 2 Anatomy is critical to understand for surgeons and interventional cardiologists (areas at risk)
- **3** Mitral valve is a complex functional unit +++
- 4 Functional anatomy is essential to share with surgeons and interventional cardiologists in a common language
- **5** Secondary MR is not a valvular disease but a ventricular (or atrial) one

