

Primary MR phenotypes/stages: what do they offer?

Nina Ajmone Marsan, MD, PhD, FESC

Cardiology Department Leiden University Medical Center, The Netherlands

FACULTY DISCLOSURE

I disclose the following financial relationships:

Receiving grant/research support from Alnylam, Pfizer, Novartis, Pie Medical

Paid speaker for GE Healthcare, Philips Utrasound, Abbott Vascular, Omron, Pfizer

Why should we phenotype/stage?

- Improve risk stratification
- Impact on management: follow-up or choice of treatment

How?

- Segmental analysis of the MV for detailed assessment of mechanism and anatomical lesions
- Looking beyond the MV

Phenotypes of Mitral Valve Prolapse

Mitral Valve Prolapse

	Fibroelastic deficiency	Barlow's disease			
Clinical characteristics					
Age of onset	Older (≥60 years)	Younger (<60 years)			
History	No history of murmur	Usually long history of murmur			
Duration of the disease	Months (likely <5 years)	Years to decades			
Auscultation	Holosystolic murmur	Mid-systolic click and late systolic murmur			
Echocardiographic charact	eristics				
	No excessive valve tissue	Excessive valve tissue			
Leaflets	Thin leaflets and no billowing in noninvolved segments	Thickened leaflets Leaflet billowing			
	Single segment involvement	Multiple segments involvement			
	Normal of moderate dilatation	Severe annular dilatation			
Annulus	No calcifications	Calcifications could be present			
Chordae	Ruptured	Elongated, ruptured			
Surgical observation					
Annulus	Normal or mildly dilated annulus	Severe annular dilatation; calcifications			
	Thin translucent leaflets without excess tissue	Thick leaflets with excess tissue			
Leaflets	Single segment involved, which often shows leaflet thickening	Multiple segments involved, often bi- leaflet			
	No billowing of other segments	Multi-segmental billowing			

Van Wijngaarden et al, JCDD 2021

Mitral Valve Prolapse

Leaflet tissue

Comparative Histopathological Analysis of Mitral Valves in Barlow Disease and Fibroelastic Deficiency

Jesper Hjortnaes, MD, PhD,^{*,†} Josh Keegan, BS,* Patrick Bruneval, MD,^{‡,§,¶} Eugenia Schwartz, BS,* Frederick J. Schoen, MD, PhD,[#] Alain Carpentier, MD,^{‡,¶,**} Robert A. Levine, MD,^{††} Albert Hagège, MD,^{‡,¶,‡‡} and Elena Aikawa, MD, PhD^{*,§§}

Collagen and elastin fibers are fragmented and the spongiosa layer expands due to the accumulation of proteoglycans, characteristic of the myxomatous degeneration, and infiltrates the fibrosa layer

Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease

Boudewijn P.T. Kruithof () ^{1,2,3}*, Laura Paardekooper () ², Yasmine L. Hiemstra¹, Marie-José Goumans () ², Meindert Palmen () ⁴, Victoria Delgado¹, Robert J.M. Klautz⁴, and Nina Ajmone Marsan¹

Superimposed tissue (SIT) formation and original leaflet (OL) thickening in response to mechanical stress

Roberts et al , JACC 2014

Mitral Valve Prolapse: Primary Aetiology

• Aging?

Author Manuscript

Circulation. Author manuscript; available in PMC 2016 January 20.

Published in final edited form as: *Circulation*. 2015 January 20; 131(3): 263–268. doi:10.1161/CIRCULATIONAHA.114.012594.

Developmental?

Familial Clustering of Mitral Valve Prolapse in the Community

Francesca N. Delling, MD^{1,2}, Jian Rong, PhD^{1,3}, Martin G. Larson, ScD^{1,4}, Birgitta Lehman, RDCS¹, Ewa Osypiuk, MD¹, Plamen Stantchev, MD¹, Susan A. Slaugenhaupt, PhD⁵, Emelia J. Benjamin, MD, ScM^{1,6,7}, Robert A. Levine, MD⁸, and Ramachandran S. Vasan, MD^{1,6,7}

Parental mitral valve prolapse was associated with a higher prevalence of mitral valve prolapse in their offspring

2020, Vol. 27(3) 272–280 © The European Society of Cardiology 2019

Article reuse guidelines: sagepub.com/journals-permissions

DOI: 10.1177/2047487319874148 journals.sagepub.com/home/cpr

Cardiology

(\$)SAGE

Full research paper

Familial occurrence of mitral regurgitation in patients with mitral valve prolapse undergoing mitral valve surgery

Yasmine L Hiemstra¹, Aniek L van Wijngaarden¹, Mathilde W Bos¹, Martin J Schalij¹, Robert JM Klautz², Jeroen J Bax¹, Victoria Delgado¹, Daniela QCM Barge-Schaapveld³ and Nina Ajmone Marsan¹

Familial MR

The Father

The Son

Indication for surgery

Probability of mitral valve repair

Table II Probability of successful surgical mitral valve repair in MR based on echo findings					
Aetiology	Dysfunction	Calcification	Mitral annulus dilatation	Probability of repair	
Degenerative	II: Localized prolapse (P2 and/or A2)	No/localized	Mild/moderate	Feasible	
Secondary	l or IIIb	No	Moderate	Feasible	
Barlow	II: Extensive prolapse (≥3 scallops, posterior commissure)	Localized (annulus)	Moderate	Difficult	
Rheumatic	Illa but pliable anterior leaflet	Localized	Moderate	Difficult	
Severe Barlow	II: Extensive prolapse (\geq 3 scallops, anterior commissure)	Extensive (annulus + leaflets)	Severe	Unlikely	
Endocarditis	II: Prolapse but destructive lesions	No	No/mild	Unlikely	
Rheumatic	Illa but stiff anterior leaflet	Extensive (annulus + leaflets)	Moderate/severe	Unlikely	
Secondary	IIIb but severe valvular deformation	No	No or severe	Unlikely	

"Detailed MV segmental analysis And referral to Heart Valve Center"

Lancellotti et al, EHJ CVI 2022

Annular abnormalities

Posterior Annular "Curling"

Annular Dilatation

Annular abnormalities

Interactive CardioVascular and Thoracic Surgery 32 (2021) 506-514 doi:10.1093/icvts/ivaa304 Advance Access publication 26 December 2020 **ORIGINAL ARTICLE**

Cite this article as: Hiemstra YL, Tomsic A, Gripari P, van Wijngaarden AL, van der Pas SL, Palmen M et al. Evolution from mitral annular dysfunction to severe mitral regurgitation in Barlow's disease. Interact CardioVasc Thorac Surg 2021;32:506-14.

Evolution from mitral annular dysfunction to severe mitral regurgitation in Barlow's disease

Yasmine L. Hiemstra 💿 ^a, Anton Tomsic^b, Paola Gripari^c, Aniek L. van Wijngaarden^a, Stéphanie L. van der Pas^{d,e}, Meindert Palmen 💿 ^b, Robert J.M. Klautz 💿 ^b, Mauro Pepi^c, Jeroen J. Bax^a, Victoria Delgado 💿 ^a and Nina Ajmone Marsan^{a,*}

Normal mitral valve

Annular abnormalities: annular dilatation, systolic curling and/or MAD

Leaflet and chorda remodelling Moderate mitral regurgitation

Progression of leaflet and chorda remodellina Severe mitral regurgitation

Intrinsic annular abnormalities which need correction (annuloplasty) during surgery

Arrhythmic Mitral Valve Prolapse and Sudden Cardiac Death

CENTRAL ILLUSTRATION: Mitral Annulus Disjunction (MAD) Arrhythmic Cristina Basso, MD, PhD*; Martina Perazzolo Marra, MD, PhD*; Stefania Rizzo, MD, PhD; Syndrome Manuel De Lazzari, MD; Benedetta Giorgi, MD; Alberto Cipriani, MD; Anna Chiara Frigo, MSc; Ilaria Rigato, MD, PhD; Federico Migliore, MD, PhD; 116 Patients with Mitral Annulus Disjunction (MAD) Kalliopi Pilichou, PhD; Emanuele Bertaglia, MD; Luisa Cacciavillani, MD, PhD; Barbara Bauce, MD, PhD; Domenico Corrado, MD, PhD; Gaetano Thiene, MD; Sabino Iliceto, MD 14 with aborted cardiac arrest or sustained ventricular tachycardia O MAD with Mitral Valve Prolapse 26 MAD without Mitral Valve Prolapse **Holter monitoring?** 100 93% ILR? 80 69% Prevalence, % LV CMR? 40 31% 7% No VA VT/ACA No VA VT/ACA Dejgaard, L.A. et al. J Am Coll Cardiol. 2018;72(14):1600-9.

Indication for surgery

ESC/EACTS guidelilnes VHD 2021

Indication for surgery: secondary outcome determinants

Circulation

ORIGINAL RESEARCH ARTICLE

The MIDA-Q Mortality Risk Score: A Quantitative Prognostic Tool for the Mitral Valve Prolapse Spectrum

Table 1. MIDA-Q Score Calculation

Characteristic	No. of points
Age ≥65 y	3
New York Heart Association ≥III	3
Atrial fibrillation	1
Left atrium volume index ${\geq}60~mL/m^2$ or left atrial diameter ${\geq}55~mm$	1
Systolic pulmonary artery pressure ≥50 mm Hg	2
Left ventricular end-systolic diameter \ge 40 mm	1
Left ventricular ejection fraction <60%	1
Effective regurgitant orifice, mm ²	
<20	0
20–40	1
40-60	2
>60	3

		No. of Patients	Number of Secondary Outcome Determinants*	Hazard Ratio (95% CI)	P Value	P Value for Interaction
Č	Age Age <70 years Age ≥70 years	1475 801	One or Two Three or Four One or Two Three or Four	2.38 (1.43 to 3.97) 4.94 (2.10 to 11.63) 1.47 (1.01 to 2.13) 2.95 (1.96 to 4.44)	<0.0001 <0.0001 0.043 <0.0001	0.29
• F;	Surgical Risk EuroSCORE II ≥1% EuroSCORE II <1%	809 1467	One or Two ⊢ Three or Four One or Two Three or Four	1.10 (0.77 to 1.58) 2.06 (1.39 to 3.07) 2.49 (1.44 to 4.28) 3.27 (0.97 to 11.05)	0.60 0.0004 0.001 0.057	0.054
in	Continent North America Europe/Middle East	1052 1224	One or Two Three or Four One or Two Three or Four	2.65 (1.61 to 4.37) 10.73 (6.27 to 18.34) 1.85 (1.27 to 2.69) 4.04 (2.49 to 6.58)	0.0001 <0.0001 0.001 <0.0001	0.029
	LVEF LVEF >60% LVEF ≤60%	1729 547	One or Two Three or Four One or Two Three or Four	2.09 (1.48 to 2.95) 6.76 (4.42 to 10.34) 2.47 (1.33 to 4.57) 5.37 (2.75 to 10.46)	<0.0001 <0.0001 0.004 <0.0001	0.54
	LV ESD LV ESD <40 mm LV ESD 240 mm	1761 515	One or Two Three or Four One or Two Three or Four	↓ ■ 2.12 (1.53 to 2.94) ↓ ■ 5.81 (3.89 to 8.67) ↓ ■ 2.78 (1.23 to 6.24) ● ● 9.43 (4.00 to 22.24)	<0.0001 <0.0001 0.014 <0.0001	0.53
	Symptoms No symptoms Symptoms	897 1379	One or Two Three or Four One or Two Three or Four	2.08 (1.23 to 3.53) 7.53 (3.74 to 15.17) 2.09 (1.45 to 3.02) 5.41 (3.56 to 8.21)	0.007 <0.0001 <0.0001 <0.0001	0.69
	Class I Indications No Class I Indication ≥1 Class I Indication	s 560 s 1716	One or Two Three or Four One or Two Three or Four	2.05 (1.09 to 3.85) 12.43 (5.28 to 29.27) 2.14 (1.51 to 3.02) 5.56 (3.74 to 8.26) 1.0 2.0 4.0 8.0 16.0	0.025 <0.0001 <0.0001 <0.0001	0.2

Indication for surgery: secondary outcome determinants

JACC: CARDIOVASCULAR IMAGING © 2022 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

VOL. . NO. . 2022

Classification of Primary Mitral Regurgitation Based on Extra-Mitral Valve Cardiac Involvement

NEW RESEARCH PAPER

Prognostic Impact of Extra-Mitral Valve Cardiac Involvement in Patients With **Primary Mitral Regurgitation**

roup 2	Group 3	Group 4

Group O	Group 1	Group 2	Group 3	Group 4
No extra-mitral valve cardiac involvement		Left atrial involvement	Pulmonary vasculature or tricuspid involvement	Right ventricular involvement
N = 377 (34%)	N = 239 (22%)	N = 213 (19%)	N = 180 (16%)	N = 97 (9%)

Survival According to the Extent of Extra-Mitral Valve Cardiac Involvement

European Society of Cardiology European Heart Journal (2023) 44, 28–40 https://doi.org/10.1093/eurheartj/ehac504

STATE OF THE ART REVIEW Valvular heart disease

Valvular heart disease: shifting the focus to the myocardium

Nina Ajmone Marsan (1)¹, Victoria Delgado (1)^{1,2}, Dipan J. Shah³, Patricia Pellikka⁴, Jeroen J. Bax¹, Thomas Treibel⁵, and João L. Cavalcante⁶

	Echocardiography	CMR
Primary mitral regurgitation		
Standard	 LVEDD LVEF LA diameter LA volume PAPs RV dimension and function (TAPSE, FAC) 	 LVEDD LV volumes and EF LV hypertrophy/mass RV volumes and function
New	 LV GLS LV mechanical dispersion LA reservoir strain 3D LV volumes 	 LGE (replacement fibrosis) Extent Location ECV (interstitial fibrosis) GLS

Myocardial imaging biomarker

JACC: CARDIOVASCULAR IMAGING © 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER	VOL. 13, NO. 2, 2020		100
		~	80
ORIGINAL RESEARCH		al (%	60
Prognostic Value of Global Longitu Strain and Etiology After Surgery fo	dinal 🖲	Surviv	40
Primary Mitral Regurgitation			20
Yasmine L. Hiemstra, MD, ^a Anton Tomsic, MD, ^b Suzanne E. van Wijngaarden, MD, ^a Mein Robert J.M. Klautz, MD, PHD, ^b Jeroen J. Bax, MD, PHD, ^a Victoria Delgado, MD, PHD, ^a Nina J	ıdert Palmen, MD, РнD, ^b Ajmone Marsan, MD, РнD ^a		0

Similar prognosis between Barlow and FED

Number at ris	k				
LV GLS < -2	0.6%				
249	223	192	150	109	69
LV GLS ≥ -20.6%					
229	182	124	89	59	37

48

72

Follow-Up (Months)

24

0

— LV-GLS < -20.6% — LV-GLS ≥ -20.6%

log-rank 22.6 p < 0.001

96

120

Valvular Heart Disease

Synergistic Utility of Brain Natriuretic Peptide and Left Ventricular Global Longitudinal Strain in Asymptomatic Patients With Significant Primary Mitral Regurgitation and Preserved Systolic Function Undergoing Mitral Valve Surgery

Alaa Alashi, MD; Amgad Mentias, MD; Krishna Patel, MD; A. Marc Gillinov, MD;
 Joseph F. Sabik, MD; Zoran B. Popović, MD, PhD; Tomislav Mihaljevic, MD:
 Rakesh M. Suri, MD, DPhil; L. Leonardo Rodriguez, MD; Lars G. Svensson, MD,
 Brian P. Griffin, MD; Milind Y. Desai, MD

Fibrosis in Primary MR

LGE

Replacement Fibrosis

- More common in MVP than non-MVP
- Common located in segments adjacent to the posteromedial papillary muscle
- Growing evidence of association with arrhythmic risk

ECV Map

50

100

Diffuse Interstitial Fibrosis

- Similar in both MVP and non-MVP
- Associated with severity of MR
- Emerging evidence of association with:
 - Exercise capacity
 - LV function
 - Need for mitral valve intervention

Edwards NC, Moody WE, Yuan M, Weale P, Neal D, Townend JN, et al. Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. *Circ Cardiovasc Imaging* 2014;**7**:946–953.

Kitkungvan D, Yang EY, El Tallawi KC, Nagueh SF, Nabi F, Khan MA, et al. Extracellular volume in primary mitral regurgitation. *JACC Cardiovasc Imaging* 2021;**14**:1146–1160. Kitkungvan D, Yang EY, El Tallawi KC, Nagueh SF, Nabi F, Khan MA, et al. Prognostic implications of diffuse interstitial fibrosis in asymptomatic primary mitral regurgitation. *Circulation* 2019;**140**:2122–2124.

Pavon AG, Arangalage D, Pascale P, Hugelshofer S, Rutz T, Porretta AP, et al. Myocardial extracellular volume by T1 mapping: a new marker of arrhythmia in mitral valve prolapse. J Cardiovasc Magn Reson 2021;**23**:102.

Liu B, Neil DAH, Bhabra M, Patel R, Barker TA, Nikolaidis N, *et al.* Reverse myocardial remodeling following valve repair in patients with chronic severe primary degenerative mitral regurgitation. *JACC Cardiovasc Imaging* 2022;**15**:224–236.

Podlesnikar T, Delgado V, Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. *Int J Cardiovasc Imaging* 2018;**34**:97–112. Guglielmo M, Fusini L, Muscogiuri G, Baessato F, Loffreno A, Cavaliere A, *et al.* T1 mapping and cardiac magnetic resonance feature tracking in mitral valve prolapse. *Eur Radiol* 2021;**31**:1100–1109.

- Current management of patients with primary MR aim at optimizing longterm outcome by timely intervention and ensuring long-term results.
- Prevention of irreversible damage of LV, LA, or pulmonary vasculature is crucial to reduce the risk of heart failure, arrhythmias, and death
- Accurate phenotyping and staging can help in this difficult assessment and decision-making