

Tricuspid Rigurgitation after Mitral Valve Surgery

Khalil Fattouch, MD, PhD. Professor in Cardiac Surgery Director of Mitral Academy, Italy Chief Department of Cardiovascular Surgery GVM Care and Research, MEH

2021 ESC/EACTS Guidelines for the management of valvular heart disease

Recommendations on secondary tricuspid regurgi	tation	
Surgery is recommended in patients with severe secondary tricuspid regurgitation undergoing left-sided valve surgery [423-427].	I	В
Surgery should be considered in patients with mild or moderate secondary tricuspid regurgi- tation with a dilated annulus (≥40 mm or >21 mm/m ² by 2D echocardiography) undergoing left-sided valve surgery [423, 425-427].	lla	B
Surgery should be considered in patients with severe secondary tricuspid regurgitation (with or without previous left-sided surgery) who are symptomatic or have RV dilatation, in the absence of severe RV or LV dysfunction and severe pulmonary vascular disease/hyperten- sion [418, 433]. ^e	lla	B
Transcatheter treatment of symptomatic secon- dary severe tricuspid regurgitation may be con- sidered in inoperable patients at a Heart Valve Centre with expertise in the treatment of tricus- pid valve disease. ^f	IIb	c

TRICUSPID VALVE SURGERY

is recomended in severe TR (Class I)

But

Prevalence of severe TR is low: 10%-15%
Assessment of TR severity is challenge

How TR should be assessed ?

Pre/post-operative assessment of TR is not reliable :

- Quantification by echo is not accurate
- regurgitation grading is related to :
 preload
 after load
 RV function

How TR should be assessed ?

- **Preload is often decreased** by vasodilators and diuretics
- **RV** function is often impaired :
 - **. RV dilated** (how dilated is too dilated ?)
 - . What is an acceptable RV function ?
 - Afterload is often / always left sided related
 - . Early repair of mitral valve allows predictability of lowering afterload for the RV

How TR should be assessed ?

Once all required features are present : RV remodelling (from crescent to spherical) RV dilatation/dysfunction Pulmonary hypertension

Absence of TR can be misleading :

as any changes in preload , afterload, RV function can unmask presence of TR

TR or annular dilatation ?

TRICUSPID VALVE SURGERY

Surgery should be considered for mild to moderate secondary TR with annular dilatation in patients undergoing life-side valve surgery (Class IIa)

But

It's not widely applied in routine practice

Many Questions need to be answered?

- 1. What is the fate/progression of uncorrected mild or moderate TR?
- 2. Is there a survival penalty of equal or less than moderate TR?
- 3. What is the impact of mild to moderate TR on late outcomes?

Impact of Tricuspid Regurgitation on Long-Term Survival

Jayant Nath, MD,* Elyse Foster, MD, FACC,† Paul A. Heidenreich, MD* Palo Alto and San Francisco, California

J Am Coll Cardiol 2004;43:405–9

(A) patients with TR and PAPs > 40 mm Hg

Patients with moderate or greater TR have worse survival than patients with mild or less TR, regardless of pulmonary artery pressure.

TR and PULMONARY ARTERY SYSTOLIC PRESSURE

(B) patients with TR and PAPs $\leq 40 \text{ mm}$ Hg.

(A) patients with tricuspid regurgitation (TR) and a low left ventricular ejection fraction (50%) and

Patients with moderate or greater TR have worse survival than patients with mild or less TR, regardless of left ventricular ejection fraction

TR and LEFT VENTRICULAR EJECTION FRACTION

(B) patients with TR and a normal left ventricular ejection fraction (50%).

Mitral valve surgery for functional mitral regurgitation: prognostic role of tricuspid regurgitation[☆]

Michele Di Mauro^a, Antonio Bivona^a, Angela L. Iacò^a, Marco Contini^a, Massimo Gagliardi^a, Egidio Varone^a, Sabina Gallina^b, Antonio M. Calafiore^{a,*}

European Journal of Cardio-thoracic Surgery 35 (2009) 635-640

Evolution of tricuspid regurgitation after mitral valve repair for functional mitral regurgitation in dilated cardiomyopathy[‡]

Michele De Bonis^{*}, Elisabetta Lapenna, Flavia Sorrentino, Giovanni La Canna, Antonio Grimaldi, Francesco Maisano, Lucia Torracca, Ottavio Alfieri

Fig. 1. Patients with progression of at least two grades of untreated preoperative TR \leq 2+ (14/78 pts, 18%).

Predictors of tricuspid regurgitation \geq 3+					
	Univariate		Multivariate		
	Odds ratio	p value	Odds ratio	p value	
Preoperative variable	s				
LVEF	1	0.6			
LVEDVI	1	0.4			
LVESVI	1	0.6			
SPAP > 40 mmHg	2.8	0.2			
RV dilatation	8.3	0.009	1.7	0.6	
RV dysfunction	13.7	0.0001	19.6	0.02	
Tricuspid repair	0.5	0.6			
TR at discharge	3	0.01	5.4	0.01	

Fig. 2. Freedom from tricuspid regurgitation ≥3+ at last follow-up.

European Journal of Cardio-thoracic Surgery 33 (2008) 600-606

Functional tricuspid regurgitation at the time of mitral valve repair for degenerative leaflet prolapse: The case for a selective approach

Oguz Yilmaz, MD,^a Rakesh M. Suri, MD, DPhil,^a Joseph A. Dearani, MD,^a Thoralf M. Sundt III, MD,^a Richard C. Daly, MD,^a Harold M. Burkhart, MD,^a Zhuo Li, MS,^b Maurice Enriquez-Sarano, MD,^c and Hartzell V. Schaff, MD^a

TABLE 1. Patient baseline characteristics			
Characteristic	Value* (N = 699)		
Age, y	60.4 (13.7)		
Male sex	459 (65.7)		
Preoperative EF, %	65.12 (7.57)		
Preoperative TR grade			
1	233 (33.3)		
2	351 (50.2)		
3-4	115 (16.5)		
Preoperative AF	122 (17.5)		
Preoperative dilatation			
RA	203 (29.0)		
RV	31 (4.4)		
NYHA class			
I	199 (28.5)		
П	258 (36.9)		
Ш	220 (31.5)		
IV	22 (3.1)		

TABLE 5. Univariate and 1	Univariate predictors of fate mortanty Univariate Multivariate				
Variable	HR	P value	HR	<i>P</i> value	
Female sex		.76		1 1000	
Age	1.09	<.001	2.63	<.001	
Hypertension		.37			
Diabetes mellitus		.19			
Renal failure		.54			
COPD		.007			
Previous AF		.22			
Preoperative TR \geq grade 3		.02			
RA dilatation		.24			
RV dilatation		.28			
EF	0.98	.19			
LVEDD	0.93	.005			
LVESD	0.97	.33			
LAVI	1.01	.20			
LVMI	1.01	.23			

Conclusions: Clinically silent nonsevere tricuspid valve regurgitation in patients with degenerative mitral valve disease is unlikely to progress after mitral valve repair. Tricuspid valve surgery is rarely necessary for most patients undergoing repair of isolated mitral valve prolapse.

	Univ	ariate	Multivariate		
Parameter	P value	Parameter estimate	P value	Parameter estimate	
Female sex	.02	0.405	.009	0.441	
Age	.37	0.006			
Hypertension	.08	0.312			
Diabetes mellitus	.02	1.181	.02	1.112	
Previous AF	<.001	0.642	<.001	0.628	
Preoperative echocardiography					
RA dilatation	.03	0.577			
RV dilatation	.18	0.510			
EF	.10	-0.017			
LVMI	.67	-0.001			
LAVI	.56	0.005			
PAP	.71	0.003			
TR velocity	.64	0.100			
Preoperative TR (grade 3-4)	.03	-0.525	.008	-0.614	
Operative finding, MV prolapse					
Anterior	.03	-1.200			
Posterior	.03	-0.893			
Both	.07	-0.762			

TABLE 2. Predictors of change in TR grade*

Our conclusions

- The data presented by authors did not support their conclusion.
- At the beginning, 13% of pts had 3+ or 4+ TR, and at 5 years followup 29.6 % had a 3+ or 4+ TR. They conclude that there was no spontaneous evolution. We can conclude that it was an ongoing disease that requires action at an early stage.

Progression of Tricuspid Regurgitation After Surgery for Ischemic Mitral Regurgitation

Philippe B. Bertrand, MD, PhD,^{3,*} Jessica R. Overbey, DRPH,^{b,*} Xin Zeng, MD, PhD,^a Robert A. Levine, MD,^a Gorav Ailawadi, MD,^c Michael A. Acker, MD,^d Peter K. Smith, MD,^c Vinod H. Thourani, MD,^f Emilia Bagiella, PhD,^b Marissa A. Miller, DVM, MPH,[#] Lopa Gupta, MPH,^b Michael J. Mack, MD,^h A. Marc Gillinov, MD,ⁱ Gennaro Giustino, MD,^b Alan J. Moskowitz, MD,^b Annetine C. Gelijns, PhD,^b Michael E. Bowdish, MD,^j Patrick T. O'Gara, MD,^k James S. Gammie, MD,ⁱ Judy Hung, MD,^a on behalf of the Cardiothoracic Surgical Trials Network (CTSN)

FIGURE 2 TR at Baseline and at Different Stages of Follow-Up

(n = 492)

В

(n = 387) (n = 388) Trace Mild Moderate Severe

(n = 324)

TABLE 1 Baseline Characteristics of the Patient Cohort

	Total Cohort (N = 492)	Severe IMR Group (n = 202)	Moderate IMR Group (n = 290)	p Value
Age, yrs	66.3 ± 10.4	68.4 ± 9.8	64.8 ± 10.5	0.0001
Male	328 (66.7)	127 (62.9)	201 (69.3)	0.14
BSA, m ²	1.9 ± 0.3	1.9 ± 0.2	2.0 ± 0.3	0.03
Medical and surgical history				
Diabetes	205 (41.8)	71 (35.3)	134 (46.2)	0.02
Hypertension	405 (82.3)	162 (80.2)	243 (83.8)	0.30
Renal insufficiency	103 (21.0)	54 (26.7)	49 (17.0)	0.009
Myocardial infarction	343 (69.7)	150 (74.3)	193 (66.6)	0.07
Heart failure	293 (59.6)	141 (69.8)	152 (52.4)	0.0001
Atrial fibrillation	108 (22.0)	58 (28.7)	50 (17.4)	0.003
Permanent pacemaker or ICD	60 (12.2)	36 (17.8)	24 (8.3)	0.002
Echocardiography data				
LV ejection fraction, %	40.4 ± 11.3	40.8 ± 11.6	40.2 ± 11.2	0.53
LVESVI, ml/m ²	60.3 ± 26.0	64.2 ± 26.3	57.6 ± 25.5	0.006
MR effective regurgitant orifice area, cm ²	0.29 ± 0.14	0.39 ± 0.15	0.23 ± 0.09	< 0.0001
Tricuspid regurgitation				< 0.0001
None/trace	297 (60.4)	97 (48.0)	200 (69.0)	
Mild	153 (31.1)	79 (39.1)	74 (25.5)	
Moderate	42 (8.5)	26 (12.9)	16 (5.5)	
Tricuspid annular diameter, mm	38.3 ± 5.2	38.2 ± 5.5	38.3 ± 5.1	0.88
Tricuspid annular index, mm/m ² BSA	20.3 ± 3	20.5 ± 3	20.1 ± 2.9	0.09
TAPSE, mm	16.8 ± 3.8	16.4 ± 3.7	17 ± 3.9	0.11
RV fractional area change, %	42.4 ± 8.5	42.2 ± 7.8	42.6 ± 9	0.63
Tricuspid regurgitation peak velocity, cm/s	293.1 ± 54.5	305 ± 49	283.7 ± 56.8	0.0002
Operative data				
Cardiopulmonary bypass time, min	136.5 ± 54.6	139.8 ± 47.3	134.3 ± 59.2	0.25
Aortic cross-clamp time, min	98.2 ± 40.8	101.2 ± 39.6	96.1 ± 41.6	0.17
MV repair	246 (50.0)	97 (48.0)	149 (51.4)	0.46
MV replacement	106 (21.5)	105 (52.0)	1 (0.3)	< 0.0001
CABG	448 (91.1)	158 (78.2)	290 (100.0)	< 0.0001
Surgical AF ablation	42 (8.5)	22 (10.9)	20 (6.9)	0.12

Bertrand, P.B. et al. J Am Coll Cardiol. 2021;77(6):713-24.

At 2 years after surgery for ischemic mitral regurgitation (IMR), progression of tricuspid regurgitation (TR) is not as common as generally expected. Post-operative TR depends not only on pre-operative risk factors (baseline TR, tricuspid annular size, or atrial fibrillation) but is associated with post-operative factors such as mitral regurgitation recurrence and permanent pacemaker/defibrillator as well. *M = moderate IMR trial; *S = severe IMR trial; AF = atrial fibrillation; CABG = coronary artery bypass graft; ICD = implantable cardioverter-defibrillator; LA = left atrium; LV = left ventricle; RA = right atrium; RV = right ventricle.

CONCLUSIONS After IMR surgery, progression of unrepaired nonsevere TR is uncommon. Baseline TAD is not predictive of TR progression and is poorly discriminative of ≥moderate TR at 2 years. TR progression and presence of ≥moderate TR are associated with clinical events. (Comparing the Effectiveness of a Mitral Valve Repair Procedure in Combination With Coronary Artery Bypass Grafting [CABG] Versus CABG Alone in People With Moderate Ischemic Mitral Regurgitation, NCT00806988; Comparing the Effectiveness of Repairing Versus Replacing the Heart's Mitral Valve in People With Severe Chronic Ischemic Mitral Regurgitation, NCT00807040) (J Am Coll Cardiol 2021;77:713-24) © 2021 by the American College of Cardiology Foundation.

Tricuspid regurgitation is uncommon after mitral valve repair for degenerative diseases

Tirone E. David, MD, Carolyn M. David, BN, Chun-Po

TABLE 6. Multivariable isolated moderate/severe tric	factors ass cuspid valve	ociated with posto regurgitation	operative
Factor	Reliability	M.HR (LCL-UCL)	P value
Age at operation (per 5 y)	99.8%	1.487 (1.239-1.786)	<.001
Postoperative (<1 mo)	98.2%	2.842 (1.815-4.448)	<.001
TR grade			
Insertion of permanent	95.4%	7.428 (3.066-18.00)	<.001
pacemaker			
Preoperative atrial fibrillation	83.2%	2.200 (1.209-4.002)	.01
M.HR, Multivariable hazard ratio;	LCL, lower co	onfidence limit (95%); U	CL, upper

confidence limit (95%); TR, tricuspid regurgitation.

FIGURE 3. Incidence of moderate/severe tricuspid regurgitation over time for all patients (top) and stratified by preoperative tricuspid valve regurgitation and concomitant tricuspid annuloplasty (bottom). Dotted lines represent the 95% confidence interval. TR. Tricuspid regurgitation:

TABLE 7.	Incidence of TR	(moderate) over	time (note:	<5% of all TR	was gre	eater than	moderate

			Preoperative TR without	Preoperative TR with
Years	Overall	No preoperative TR	tricuspid annuloplasty	tricuspid annuloplasty
1	4.3% (3.3%, 5.3%)	1.7% (1.2%, 2.3%)	45.5% (35.5%, 55.4%)	7.8% (1.9%, 13.5%)
5	6.0% (4.9%, 7.1%)	3.0% (2.2%, 3.8%)	51.9% (41.4%, 63.0%)	6.1% (0.1%, 13.2%)
10	9.1% (7.2%, 11.1%)	5.9% (4.4%, 7.4%)	59.8% (45.5%, 74.1%)	4.4% (0.0%, 18.3%)
15	13.6% (9.6%, 17.5%)	11.5% (7.9%, 15.4%)	67.1% (46.4%, 83.8%)	3.1% (0.0%, 27.7%)

Numbers in parentheses show 95% confidence interval. TR, Tricuspid regurgitation.

Factor	M.HR (LCL-UCL)	P value
Age at operation (per 10 y)	2.13 (1.64-2.92)	<.001
Preoperative TR/TA		
No TR	Reference	
TR with TA	2.96 (0.92-9.19)	.06
TR without TA	98.3 (39.7-344.4)	<.001
Postoperative MR grade*		
Less than moderate	0.20 (0.10-0.35)	<.001

TR, Tricuspid regurgitation; M.HR, multivariable hazard ratio; LCL, lower confidence limit (95%); UCL, upper confidence limit (95%); TA, tricuspid annuloplasty; MR, mitral regurgitation. *Collected longitudinally.

CONCLUSIONS

Patients with MR due to degenerative diseases develop TR because of older age, chronic AF, advanced functional class, impaired left ventricular function, congenital heart septal defects, and female sex. These factors adversely affect long-term survival, and TA does not seem to restore life span to the level of patients without TR. Patients with moderate and severe TR at the time of MV repair probably should have concomitant TA to reduce the probability of developing TR. New TR after MV repair is uncommon during the first 15 years of follow-up, but when it happens it is associated with poor prognosis largely because of the factors associated with it. The findings of this study are compelling reasons to recommend MV repair early on the course of severe MR due to degenerative diseases.

Tricuspid regurgitation is uncommon after mitral valve repair for degenerative diseases

Tirone E. David, MD, Carolyn M. David, BN, Chun-Po S. Fan, PhD, and Cedric Manlhiot, PhD

Tricuspid annular dilatation should be corrected despite presence of TR?

Secondary Tricuspid Regurgitation or Dilatation: Which Should Be the Criteria for Surgical Repair?

Gilles D. Dreyfus, MD, Pierre J. Corbi, MD, K. M. John Chan, AFRCS, and Toufan Bahrami, MD

Ann Thorac Surg 2005;79:127–32

Survival

Cardiac-related events

, 0	0 2		012		
	Before Surgery		After	After Surgery	
	Group 1 (MVR)	Group 2 (MVR + TVR)	Group 1 (MVR)	Group 2 (MVR + TVR)	
Grade 0	54	38	8	102	
Grade 1	102	92	23	41	
Grade 2	7	16	67	4	
Grade 3	0	2	40	1	
Grade 4	0	0	15	0	
Mean TR grade	0.7 ± 0.5^{a}	0.9 ± 0.6^{a}	2.1 ± 1.0^{b}	0.4 ± 0.6^{b}	
^a p = 0.027 Mann–Whitney.	^ь p < 0.001 Mann–Whitney.				

Table 3. Tricuspid Regurgitation Grade Measured by Transthoracic Echocardiography

MVR = mitral valve repair;

TR = tricuspid regurgitation;

TVR = tricuspid valve repair.

Conclusions. Remodeling annuloplasty of the tricuspid valve based on tricuspid dilation improves functional status irrespective of the grade of regurgitation. Considerable tricuspid dilatation can be present even in the absence of substantial TR. Tricuspid dilatation is an ongoing disease process that will, with time, lead to severe TR.

Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair

Nico R. Van de Veire, Jerry Braun, Victoria Delgado, Michel I.M. Versteegh, Robert A. Dion, Robert J.M. Klautz and Jeroen J. Bax J Thorac Cardiovasc Surg 2011;141:1431-1439

Conclusions: Concomitant tricuspid annuloplasty during mitral valve repair should be considered in patients with tricuspid annular dilatation despite the absence of important tricuspid regurgitation at baseline because this improves echocardiographic outcome. (J Thorac Cardiovasc Surg 2011;141:1431-9)

2002 Cohort: concomitant tricuspid annuloplasty was performed in patients with grade 3 or 4 TR (16%)

2004 Cohort: tricuspid annuloplasty was performed in patients with grade 3 or 4 TR and in patients with tricuspid annular diameter of 40 mm or greater (63%)

TABLE 3. Two-year follow-up: Entire 2002 cohort

	Baseline	Follow-up	P value
New York Heart Association class	2.6 ± 0.8	1.4 ± 0.6	<.0001
Canadian Cardiac Society class	1.3 ± 0.6	1.0 ± 0.2	<.001
LA diameter (mm)	50 ± 10	43 ± 8	<.0001
LV end-diastolic diameter (mm)	61 ± 9	52 ± 10	<.0001
LV end-systolic diameter (mm)	42 ± 11	35 ± 11	<.0001
Mitral regurgitation grade	3.4 ± 0.7	0.7 ± 0.8	< 0001
RV long axis (mm)	69 ± 7	70 ± 8	.301
RV short axis (mm)	29 ± 7	30 ± 7	.080
Tricuspid regurgitation grade	1.6 ± 1.0	1.3 ± 1.0	.211
Transtricuspid gradient (mm Hg)	25 ± 10	23 ± 9	.091
IA Left atrial: IV left vantricular: RV r	ight ventricular		$\overline{}$

TABLE 4. Two-year follow-up: Entire 2004 cohort

	Baseline	Follow-up	P value
New York Heart Association class	2.6 ± 0.8	1.8 ± 0.8	<.0001
Canadian Cardiac Society class	1.3 ± 0.8	1.1 ± 0.2	<.001
LA diameter (mm)	48 ± 7	44 ± 7	<.0001
LV end-diastolic diameter (mm)	59 ± 8	53 ± 9	<.0001
LV end-systolic diameter (mm)	42 ± 11	38 ± 12	<.0001
Mitral regurgitation grade	3.3 ± 0.5	0.8 ± 0.8	< 0001
RV long axis (mm)	71 ± 6	69 ± 9	.001
RV short axis (mm)	29 ± 5	27 ± 5	<.0001
Tricuspid regurgitation grade	1.6 ± 1.0	0.9 ± 0.6	<.0001
Transtricuspid gradient (mm Hg)	28 ± 13	23 ± 15	.021

LA, Left atrial; LV, left ventricular, RV, right ventricular.

reverse in right ventricular remodeling and reduction in TR.

Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure

Ravi R. Desai, BE,^a Lina Maria Vargas Abello, MD,^b Allan L. Klein, MD,^c Thomas H. Marwick, MD, PhD,^c Richard A. Krasuski, MD,^c Ying Ye, BS,^a Edward R. Nowicki, MD, MS,^b Jeevanantham Rajeswaran, MSc,^d Eugene H. Blackstone, MD,^{b,d} and Gösta B. Pettersson, MD, PhD^b

FIGURE 1. Percentage of patients with grade 2+/3+/4+ tricuspid regurgitation (*TR*) grades postoperatively over time stratified by preoperative (*pre-op*) TR grades. Open diamonds and blue line indicate patients with preoperative TR grade 0; open circles and green line, those with preoperative grade 1+; open squares and purple line, those with preoperative grade 2+; closed circles and black line, those with preoperative grade 3+/4+ and undergoing a tricuspid valve (*TV*) procedure; and open triangles and red line, those with preoperative grade 3+/4+ and no TV procedure. A, TR grade 2+/3+/4+ postoperatively according to preoperative TR grade and TV procedure; and (B) TR grade 2+/3+/4+ postoperatively for patients with severe preoperative TR according to whether a TV procedure was performed.

FIGURE 2. Tricuspid annular plane systolic excursion (*TAPSE*) over time stratified by preoperative tricuspid regurgitation (*TR*) grade. Depiction by preoperative TR grade and tricuspid valve (*TV*) procedure as in Figure 1. A, TAPSE for all preoperative TR grades and TV procedure. B, TAPSE for patients with severe preoperative TR according to whether a TV procedure was performed.

TABLE 1. Risk factors associated tricuspid regurgitation	id regurgitation		
		P	Reliability
Factor	Estimate \pm SE	value	(%)*
Overall			
Older age [†]	1.1 ± 0.23	<.0001	77
Women	1.02 ± 0.26	.0001	52
Higher grade of preoperative TR [‡]	-1.7 ± 0.53	.001	71
Early phase			
Higher preoperative MPI§	4.1 ± 1.8	.02	61
Absence of TV procedure	-4.2 ± 1.1	.0001	
Late phase			
Lower LV ejection fraction	3.9 ± 1.3	.003	61
Higher MR grade	1.4 ± 0.56	.02	78
Absence of TV procedure	-2.3 ± 0.58	<.0001	

LV, Left ventricular; MPI, myocardial performance index; MR, mitral regurgitation; SE, standard error; TR, tricuspid regurgitation; TV, tricuspid valve. *Percentage of times variable appeared in 500 bootstrap models. †(Age/50)², squared transformation. ‡(1/[TR grade+1]), inverse transformation. §MPI2, squared transformation. ||(50/ejection fraction), inverse transformation.

Conclusions: In patients with mitral valve disease and severe tricuspid regurgitation, mitral valve repair alone was associated with improved tricuspid regurgitation and right ventricular function. However, the improvements were incomplete and temporary. In contrast, concomitant tricuspid valve repair effectively and durably eliminated severe tricuspid regurgitation and improved right ventricular function toward normal, supporting an aggressive approach to important functional tricuspid regurgitation. (J Thorac Cardiovasc Surg 2013;146:1126-32)

Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse

Joanna Chikwe, MD, Shinobu Itagaki, MD, Anelechi Anyanwu, MD, David H. Adams, MD

Greater freedom from late moderate tricuspid regurgitation (TR) was observed in patients who underwent mitral valve repair (MVR) and tricuspid annuloplasty (red dotted line) compared with those who underwent only mitral valve repair (blue solid line). CI = confidence interval; HR = hazard ratio; TVR = tricuspid valve repair.

JACC VOL. 65, NO. 18, 2015 MAY 12, 2015:1931-8

ABLE 2 Determinants of Recurrent TR (Moderate or Greater)				
	Univariate		Multivariate	
	p Value	HR	p Value	HR (95% CI)
Age	0.03	1.06	0.01	1.09 (1.02-1.16)
Female	0.31	1.76		
Hypertension	0.17	0.41	0.06	
Diabetes mellitus	0.08	6.87	0.12	
Coronary artery disease	0.12	2.58	0.42	
Etiology (Barlow disease as reference)				
FF	0.42	2.24	0.99	
FED	0.07	4.23	0.26	
LV ejection fraction <60%	0.91	1.07		
LV end-systolic diameter >40 mm	0.22	0.28	0.26	
Pulmonary artery systolic pressures >50 mm Hg	0.45	1.64		
Atrial fibrillation	0.98	1.02		
Tricuspid annulus diameter	0.58	1.06		
Pre-operative RV dysfunction	0.75	1.24		
Tricuspid annuloplasty	0.08	0.345	0.04	0.26 (0.07-0.94)

CI = confidence interval; FED = fibroelastic deficiency; FF = forme fruste; HR = hazard ratio; TR = tricuspid regurgitation; other abbreviations as in Table 1.

Patients who underwent concomitant tricuspid valve repair (TVR) had significantly higher pulmonary pressures pre-operatively compared with patients who underwent only mitral valve repair (MVR) (p < 0.001). In patients who underwent MVR and tricuspid annuloplasty, pulmonary artery pressures improved such that at midterm follow-up, pulmonary artery pressures were as low as those in patients who underwent MVR only (p = 0.97). Predis = predischarge; Preop = pre-operative.

Right ventricular (RV) dysfunction initially deteriorated after surgical treatment in patients who underwent mitral valve repair (MVR) only, as well as in patients who underwent concomitant tricuspid valve repair (TVR) (both p < 0.001). During follow-up, recovery of RV function occurred in both groups, and by 5 years post-operatively, the proportion of patients with normal RV function was similar in both groups (p = 0.45). Abbreviations as in **Figure 2**.

TABLE 3 Determinants of RV Function Recovery During Follow-Up

	Univariate		Multivariate	
	p Value	HR	p Value	HR (95% CI)
Age	0.04	0.99	0.16	
Female	0.49	0.91		
Hypertension	0.94	0.99		
Diabetes mellitus	0.97	0.98		
Coronary artery disease	0.06	0.66	0.18	
LV ejection fraction <60%	0.82	0.97		
LV end-systolic diameter >40 mm	0.85	0.97		
Pulmonary artery systolic pressure >50 mm Hg	0.27	0.82		
Atrial fibrillation	0.01	0.64	0.02	0.68 (0.50-0.95)
Tricuspid annulus diameter	0.09	0.98	0.22	
Pre-operative RV dysfunction	0.10	0.76	0.43	
Pre-operative tricuspid regurgitation moderate or more	0.43	0.86		
Tricuspid annuloplasty	0.04	1.38	0.02	1.4 (1.06-1.96)
Abbreviations as in Tables 1 and 2.				

STATE-OF-THE-ART - ADULT CARDIAC

Tricuspid regurgitation after successful mitral valve surgery

Vasiliki Katsi^a, Leonidas Raftopoulos^b, Constantina Aggeli^b, Ioannis Vlasseros^a, Ioannis Felekos^{b*}, Dimitrios Tousoulis^b, Christodoulos Stefanadis^b and Ioannis Kallikazaros^a

Table 2: Major determinants of late onset TR

Study	Determinant
De Bonis et al. [22]	Right chamber dilatation/dysfunction
Mutlak et al. [8]	Higher PASPs
Wang et al. [19]	Longer time from onset of MV disease to surgery
Boyaci et al. [18]	History of rheumatic heart disease
Matsunaga and Duran [15]	Ischaemic heart disease
Song et al. [20]	Female gender
Song et al. [20]	Larger LA size
Kim et al. [21]	AF
Shiran and Sagie [7]	Prosthetic valve malfunction

Pathophysiological mechanisms

- TA dilatation
 - -Myocardial infarction -Cardiomyopathies -Valvular heart disease
- Right ventricular pressure/volume overload

ASD

Pulmonary hypertension due to -left-sided heart disease -cor pulmonae -idiopathic PH

Conclusions

- The tricuspid valve shows different steps of disease
- Each step requires to be identified and should receive appropriate treatment
- Early surgery in degenerative mitral regurgitation with preserved LV/RV function without AF/PH lead to better outcomes (also in term of postoperative TR evolution/progression).
- Progression of less than moderate TR in rheumatic/functional mitral diseases and heart failure is progressive and have a worse prognosis.

Conclusions

- Tricuspid annuloplasty in patients with annular dilatation > 4 cm and mild to moderate TR is recommended (IIa)
- Isolated annular dilatation without TR may be keep untreated (accurate evaluation of type of mitral valve disease and RV geometry/function may be helpful in decision making)

Conclusions

Progression of TR after MVS is present in 20% to 30% in different series.

Moderate to severe TR is associated with worse outcomes and is a hightly lethal condition for which there are no clear guidlines to decide how and when to treat. Obviously if such a situation could be avoided, it should be.

As M. Mack said in a recent editorial, the harder one looks, the more one finds.