

Flash news: Are all patients with degenerative mitral regurgitation the same? **Risk of arrhythmias and sudden death**

Madalina Garbi MD MA FRCP

Consultant Cardiologist, Royal Papworth Hospital, Cambridge University Health Partners, Cambridge UK The NICE Topic Adviser on Heart Valve Disease

Are all patients with degenerative mitral regurgitation the same?

BD & **FED** are 2 distinct entities regarding microscopic pathology Arrhythmia and SCD risk factors differ with the type of degenerative MR

Hjortnaes et al (Levine, Carpentier), Semin Thoracic Surg 2016

Risk of SCD in severe MR due to flail MV leaflet (*FED) symptoms / EF drop

Grigioni et al, JACC 1999

Normal heart **vs** Severe MR with LVEF > 60% <u>desmin disruption / reduction / aggregation</u> *disruption of desmin-mitochondrial architecture*

Ahmed et al, J Thorac Cardiovasc Surg, 2016

SCD in severe MR due to flail MV leaflet (*FED)

Grigioni et al. JACC, 1999

MVP Sudden Cardiac Arrest

almost half have no significant MR \rightarrow unrelated to volume overload / HF

Characteristic	With MVP $(n = 17)$	Without MVP $(n = 712)$	Ρ
Age (y)	60.9 ± 16.4	69.7 ± 14.7	.02
Sex: male	12 (70.6)	459 (64.5)	.60
Race: white	14 (82.4)	599 (84.7)	.73
Body mass index (kg/m ²)	27.0 ± 5.8	30.3 ± 9.1	.18
Hypertension	7 (41.2)	561 (78.9)	.001
Diabetes	1 (5.9)	330 (46.4)	.001
Known CAD	5 (29.4)	467 (65.6)	<.0001
Chronic kidney disease	2 (11.8)	250 (35.2)	.04
LVEF (%)	54.2 ± 14.7	$\textbf{48.1} \pm \textbf{16.9}$.14
LVEF \leq 35%	1 (6.7)	196 (28.5)	.08
Left atrial diameter (mm)	$\textbf{45.0} \pm \textbf{8.7}$	$\textbf{44.9}\pm\textbf{10.1}$.98
LV diameter (mm)	54.7 \pm 7.3	$\textbf{51.8} \pm \textbf{10.6}$.38
Moderate or severe MR	10 (58.8)	170 (23.9)	.02
β-Blockers	9 (52.9)	404 (59.0)	.62
ACE inhibitors	4 (23.5)	338 (49.3)	.05
ARBs	1 (5.9)	65 (9.5)	1.0
Antiarrhythmic drugs	2 (11.7)	219 (32.0)	.11
Antiplatelets	7 (41.2)	510 (74.4)	.002
Lipid-lowering drugs	2 (11.7)	337 (49.2)	.002
QT-prolonging drugs	5 (29.4)	334 (48.7)	.11
QTc interval (ms)	$\textbf{429.3} \pm \textbf{33.1}$	$\textbf{459.0} \pm \textbf{40.6}$.35

Table 3 Comparison of SCA patients with and without MVP

"Malignant" MVP 0.7% of unexplained OHCA young mainly women bi-leaflet prolapse (Barlow Disease) mild-moderate MR ST – T changes No ischaemia No channelopathy

Table 1	Demographics of OHCA Cohort ($n = 24$)				
	Demographic	OHCA Cohort	Bileaflet MVP	No MVP	p Value*
n		24/1,200 (2%)	10/24 (42%)	14/24 (58%)	_
Age at sent	inel event (yrs)	32 \pm 15 (median 33.5; range: 5–60)	33 \pm 16 (median 34.7; range: 5–60)	32 \pm 14 (median 29.4; range: 14–51)	0.84 †
Women		16 (67%)	9/10 (90%)	7/14 (50%)	0.04
QTc interval	(ms)	$\textbf{430} \pm \textbf{25}$	$\textbf{434} \pm \textbf{22}$	$\textbf{428} \pm \textbf{28}$	0.52 §
Cardiac arre	st as sentinel event	22/24 (92%)	8/10 (80%)	14/14 (100%)	0.16 ‡
Activity at t	me of cardiac arrest	17 wakeful rest, 7 acute emotional or physical stress, 0 sleep	8 wakeful rest, 2 acute emotional or physical stress, 0 sleep	9 wakeful rest, 5 acute emotional or physical stress, 0 sleep	0.65 ‡
ICD implant	ation	24/24 (100%)	10/10 (100%)	14/14 (100%)	_
Follow-up at	ter ICD placement (yrs)	3.8 ± 4.1 (median 1.8; range: 0.1–11.9)	7.2 ± 3.5 (median 7.3; range: 2.4–11.9)	1.4 - 2.5 (median 0.7; range: 0.1-5.9)	0.0003 †
Patients wit	h appropriate ICD therapies	13/24 (54%)	8/10 (80%)	5/14 (36%)	0.04 ‡
Genetic test	ing for channelopathies¶	20/24 (83%)	9/10 (90%)	11/14 (79%)	0.61 ‡
LQTS type	🙁 1, 2, and 3	17/24 (71%)	9/10 (90%)	8/14 (57%)	0.18 ‡
Isolated t	esting for SCN5A gene mutation	2/24 (8%)	0/10 (0%)	2/14 (14%)	0.49 ‡
RYR2 ger	e mutation test	7/24 (29%)	2/10 (20%)	5/14 (36%)	0.65 ‡
LVEF at pre	sentation	$\textbf{60.3} \pm \textbf{1.6}$	$\textbf{60.5} \pm \textbf{3.1}$	60.2 ± 1.7	0.92 §
No. with ab	normal RV size or function	0	0	0	_
RVSP by Do estima	ppler echocardiographic tion (mm Hg)	28.7 ± 5.6 (range: 19-41)	28.6 ± 6.0 (range: 23-41)	28.7 ± 5.6 (range: 19-41)	0.95 §
Mitral valve	regurgitation	18/24 (75%)	10/10 (70%)	8/14 (57%)	0.02 ‡
Mild		13/24 (54%)	5/10 (50%)	8/14 (57%)	1.00 ‡
Moderate		4/24 (17%)	4/10 (40%)	0/14 (0%)	0.02 ‡
Severe		1/24 (4%)	1/10 (10%)	0/14 (0%)	0.42 ‡
ST-T repola	ization changes#	16/23 (70%)	8/9 (89%)	8/14 (57%)	0.17 ‡
Inverted/	biphasic T wave	12/23 (52%)	7/9 (78%)	4/14 (29%)	0.04 ‡
J wave		5/23 (22%)	1/9 (11%)	4/14 (29%)	0.62‡
ST-segme	nt depression $>$ 1 mm	1/23 (4%)	1/9 (11%)	0/14 (0%)	0.39 ‡

Sriram et al. JACC, 2013 Mayo EP team

Variable VE morphology / origin

not supporting traction theory / focal fibrosis relationship *automatic not reentry mechanism*

Table 2	Relationship of Ventricular Ectopic Activity With Bileaflet MVP in OHCA Survivors With Ambulatory Holter Monitoring (n = 19)				
	Variable	Bileaflet MVP (n = 9)	No MVP (n $=$ 10)	p Value*	
PVCs		9/9 (100%)	7/7 (100%)	_	
Ventricular ectopic activity burden (PVCs/h)		67 (35-690)	23 (1-258)	0.002†	
NSVT/sustained VT		7/9 (78%)	1/10 (10%)	0.006‡	
Polymorphic VT		4/9 (44%)	1/10 (10%)	0.14‡	
Episodes of NSVT per h		0.3 (0-7.4)	0 (0-0.1)	0.003†	
Bigeminal PVCs		9/9 (100%)	1/10 (10%)	<0.0001†	
Bigeminal PVCs per h		0.4 (0.05-67.6)	0 (0-0.3)	0.0003†	
Ventricular couplets per h		3.0 (0.3-26.5)	0.04 (0-1.6)	0.0015†	
Alternating papillary muscle/outflow tract $\text{PVCs}\S$		7/9 (78%)	(78%) 2/10 (20%)		
Other sites of PVC origin					
RV free wall		1/9 (11%)	1/10 (10%)		
RV midcavity		2/9 (22%)	1/10 (10%)		
LV midcavity		2/9 (22%)	1/10 (10%)		
Fascicle/papillary muscle alone		0/9 (0%)	1/10 (10%)		
Multiform PVCs		1/9 (11%)	0/10 (0%)		

Sriram et al. JACC, 2013

Typical case

ICD implantation for out of hospital cardiac arrest

ICD shock (x3) a few months later for polymorphic VT degenerating in VF

MRI: myopathic LV & bi-leaflet MVP

CARTO mapping for VT ablation based on CT imaging integration basal posterior wall

beneath the papillary muscle and the subvalvular apparatus of the mitral valve only 1% VEs on 24 h ECG following ablation

Myocardial origin of automatic VT with high VF potential

Pathology evidence

68 consecutive cases with MVP as "cause of death" (SCD reference centre) no evidence of CAD all were Barlow valves

Ventricular fibrosis

microscopic diffuse 80.9% 89.1% LV only 10.9% RV as well

Garbi, Lancellotti, Sheppard, OpenHeart 2018

Barlow Cardiomyopathy

Myocyte degeneration cytoplasmic vacuolation

Distinct cardiomyopathy

Garbi et al. OpenHeart 2018

Disease of the myocardium as well as of the valve

Daza et al. J Cardiovasc Magn Reson, 2021

Presentation and outcome of arrhythmic MVP

Essayagh [...] Enriquez-Sarano, JACC 2020

All roads lead to Rome

		Overall Population	No Arrhythmia	Ventricular Arrhythmia	
		(N = 595)	(n = 338)	(n = 257)	p Value
	Clinical characteristics				
	Age, yrs	65 ± 16	63 ± 17	68 ± 15	0.0001
	Female	278 (47)	178 (53)	100 (39)	0.0008
	BMI, kg/m ²	25 ± 5	25 ± 5	26 ± 5	0.0008
	HR, beats/min	68 ± 14	67 ± 14	68 ± 15	0.40
	Atrial fibrillation	107 (18)	53 (16)	54 (21)	0.09
	Hypertension	227 (38)	119 (35)	108 (42)	0.09
	Diabetes	43 (7)	23 (7)	20 (8)	0.60
	Dyslipidemia	242 (41)	133 (39)	109 (42)	0.50
	CAD history	135 (23)	65 (19)	70 (27)	0.02
	Congestive heart failure history	46 (8)	19 (6)	27 (11)	0.03
	Charlson Index	0.84 ± 1.10	0.78 ± 1.06	0.92 ± 1.14	0.10
	Symptoms				
	Syncope history	66 (11)	43 (13)	23 (9)	0.10
	Chest pain	110 (18)	69 (20)	41 (16)	0.20
	Palpitation	213 (36)	122 (36)	91 (35)	0.90
	Dyspnea	210 (35)	114 (34)	96 (37)	0.40
	Edema	53 (9)	28 (8)	25 (10)	0.50
	Echocardiographic variables				
	Bileaflet	280 (47)	141 (42)	139 (55)	0.003
	Posterior	232 (39)	139 (41)	93 (36)	0.03
	Flail leaflet	60 (10)	30 (9)	30 (12)	0.30
•	MAD	186 (31)	74 (21)	112 (44)	<0.0001
T	MAD length, mm	7.5 ± 2.8	6.6 ± 2.4	8.0 ± 3.0	0.001
	Mitral leaflets length, mm				<0.0001
	Anterior	$\textbf{22.7} \pm \textbf{4.4}$	21.5 ± 4.0	24.1 ± 4.6	
	Posterior	15.4 ± 4.2	14.1 ± 3.7	17.0 ± 4.1	
	Mitral leaflets proximal thickness, mm				<0.0001
	Anterior	2.3 ± 1.2	2.1 ± 0.7	2.6 ± 1.7	
	Posterior	2.3 ± 0.9	2.1 ± 0.8	2.5 ± 1.0	
	Mitral leaflet redundancy	283 (48)	132 (40)	151 (60)	<0.0001
	LVEDD, mm	52 ± 7	50 ± 6	54 ± 7	<0.0001
	Indexed LVEDD, mm/m ²	28 ± 4	27 ± 4	28 ± 4	0.005
	LVESD, mm	33 ± 6	32 ± 5	35 ± 6	<0.0001
	Indexed LVESD, mm/m ²	18 ± 3	17 ± 3	18 ± 3	0.004
	LVEF	62 ± 7	63 ± 6	62 ± 8	0.03
	LAVI, ml/m ²	44 ± 21	38 ± 17	52 ± 24	<0.0001
	MR				< 0.0001
	No/trivial	215 (36)	159 (47)	56 (22)	
	Mild	47 (8)	25 (7)	22 (9)	
	Moderate	167 (28)	79 (23)	88 (34)	
	Severe	166 (28)	75 (22)	91 (35)	

Garbi, Garweg JACC, 2020

Why MAD obsession?

MAD presence & length was associated with arrhythmic MVP

Over-estimated Over-reported Over-measured

Mara et al. (Basso / Padova) Circulation-I, 2016

First described by **Henle** in **1876** on pathology studies *as a normal variant*

Henle J. Handbuch der systematischen Anatomie des Menschen. 1876. Germany. p14–20. confirmed as normal variant by McAlpine (1975), Angelini (RH Anderson) (1988), Zimmerman (1966) found to be more common and longer in patients with MVP by Hutchins on 900 cases pathology (NEJM,1986)

So, if it's a pathology finding, can we see it on imaging? What we see is "**leaflet atrialisation**" comprising prolapsing leaflet + MAD with limited spatial / temporal resolution & no tissue characterization ability

Can we measure **MAD** on imaging?

To measure MAD you have to be able to distinguish MAD from leaflet tissue

What is measured on imaging is "the size of the shadow"

Garbi et al, Heart, 2020

And, regarding association with arrhythmia... MAD detection with newer imaging in **96%** of structurally normal hearts

cardiac CT reconstruction – virtual dissection

An common feature cannot be a factor of risk

Toh, Shumpei Mori, et al, EHJ-CVI, 2021

Are all patients with degenerative MR arrhythmia / SCD the same ?

- I. Severe MR, impaired LV, HF or comorbidities (*IHD)
- II. No significant MR or comorbidities true malignant potential