Eurologile October 28-29, 2021

HOTEL LIÈGE CONGRÈS, BELGIUM

COURSE DIRECTORS

Patrizio Lancellotti, Liege, Belgium Khalil Fattouch, Palermo, Italy Gilbert Habib, Marseille, France José Luis Zamorano, Madrid, Spain Philippe Pibarot, Québec, Canada Mani Vannan, Atlanta, USA Jeroen Bax, Leiden, The Netherlands

When and why to provide cardiac resynchronization therapy

- Pr. Patrizio LANCELLOTTI
- University of Liège, CHU Sart Tilman, Liège

www.eurovalvecongress.com

Potential conflicts of interest

Speaker's name : Patrizio, Lancellotti, Liège, Belgium

✓ I have no conflicts of interest to report

Case Summary

Man: 53 y old

ICM, EF 35%, Severe MR

EuroScore II: 8.55%

NYHA Class III

Maximum Tailored Medical Therapy

ECG: LBBB with QRS 125 ms, HR > 70/min

Heart Failure Management

Heart Failure Management

Management of HFrEF				
To reduce mortality - for all patients				
ACE-I/ARNI BB	MRA SGLT2i			
To reduce HF hospitalization/me	ortality - for selected patients			
Volume ov Diuret	tics			
SR with LBBB > LEO ma CRT-P/D	SR midi LDDD 130 140 ms or non LBBB≥ 150 ms CRT-P/D			
Ischaemic aetiology	Non-ischaemic aetiology			
Atrial fibrillation Anticoagulation Digoxin PVI	Coronary artery disease Iron deficiency CABG Ferric carboxymaltose			
Aortic stenosis SAVR/TAVI Mitral regurgitation TEE MV Repair Ivabrad	>70 bpm Black Race ACE-I/ARNI intolerance Hydralazine/ISDN ARB			
For selected advan	ced HF patients			
Heart transplantation MCS as BT	T/BTC Long-term MCS as DT			
To reduce HF hospitalization and improve QOL - for all patients				
Exercise reha	abilitation			
Multi-professional disease management				
	💓 ESC —			

Heart Failure Management

Manage	Management of HFrEF			
To reduce m	To reduce mortality - for all patients			
ACE-I/ARNI BB		RA	SGLT2i	
To reduce HF hospitaliza	tion/mortality -	for selecte	ed patients	
	olume overload			
SR with LBBB ≥ 150 ms CRT-P/D	SR with LBI	BB 130–149 m CRT-F	s or non LBBB≥ 150 ms P/D	
Ischaemic aetiology		Non-ischaemic aetiology		
Atrial fibrillation Atrial fibrillation Digoxin P	1 Coronary ar	tery disease BG	Iron deficiency Ferric carboxymaltose	
Aortic storedia Milital regurgitation He SAVR/TAVI TEE MV Repair	art rate SR>70 bpm Ivabradine	Black Race Hydralazine/ISDI	N ARB	
For selected advanced HF patients				
Heart transplantation	MCS as BTT/BTC	Lo	ng-term MCS as DT	
To reduce HF hospitalization and improve QOL - for all patients				
Exer	cise rehabilitation			
Multi-profess	ional disease mana	agement		
			——— 🛞 ESC—	

Mitral Regurgitation Management

CRT is part of medical treatment

Recommendations	Class	Level		
Valve surgery/intervention is recommended only in patients with severe SMR who remain symptomatic despite GDMA (including CRT if indicated) and has to be decided by a structured collaborative Heart Team.	I	В		
Patients with concomitant coronary artery or other cardiac disease requiring treatment				
Valve surgery is recommended in patients undergoing CABG or other cardiac surgery.	I.	В		
In symptomatic patients, who are judged not appropriate for surgery by the Heart Team on the basis of their individual characteristics, PCI (and/or TAVI) possibly followed by TEER (in case of persisting severe SMR) should be considered.	lla	C		

Management

• Angio: no significant stenosis

--> CRT implantation (AV and VV optimisation)

Why CRT in Heart Failure?

Inclusion: NYHA class III or IV LVEF ≤ 35% QRS ≥120

CRT therapy resulted in 36% reduction in total mortality (80 vs.120)

CARE-HF: All cause mortality

Cleland JGF: N Engl J Med 2005;352:1539-49

EVALUATION OF LV FUNCTION

ETIOLOGY OF THE CARDIOMYOPATHY

MADIT CRT Circ 2010

QUANTIFICATION OF MR

European Journal of Echocardiography doi:10.1093/ejechocard/jeq031

European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease)

Patrizio Lancellotti (Chair)¹*, Luis Moura², Luc A Pierard¹, Eustachio Agricola³, Bogdan A. Popescu⁴, Christophe Tribouilloy⁵, Andreas Hagendorff⁶, Jean-Luc Monin⁷, and Luigi Badano⁸, and Jose L. Zamorano⁹ on behalf of the European Association of Echocardiography

NYHA Class III or IV

NYHA Class I or II

Table 3. Mitral Regurgitation Measures in Patients Who Underwent 12-Month Echocardiograms

	ICD Only (n=108)		CRT-D (n=249)	
	Baseline	12-mo Follow-Up	Baseline	12-mo Follow-Up
MR degree				
None	1.9	0.9	2.4	3.2
Mild	83.3	86.1	82.3	92.8
Moderate	13.0	12.0	13.2	3.6
Severe	1.9	0.9	2.0	0.4

Solomon et al Circulation 2010

Secondary MR (IIIb) in HF

MR Mechanims

- Leaflet Tethering
 - Valvular (restriction) and subvalvular (chordal tethering) changes
 - □ LV dilatation and ↑sphericity
 - Annular dilatation
 - Papillary muscle discoordination
- Closing Forces
 - LV systolic performance (contractility and dyssynchrony)
 - □ Annular contraction/shape
 - Dynamic changes with exercise

Lancellotti et al, Heart 2008

Why CRT for MR?

CRT Causes MR Reduction

CRT Improves Mitral Valve Closing Force

MR \rightarrow 30 % reduction acutely

Why CRT for MR?

The greatest proportion of improvement in those with moderate/severe MR before CRT

Biase LD et al. Europace 2011;13: 829-838

Abraham WT et al. N Engl J Med 2002;346:1845-53.

Why CRT for MR?

resynchronization therapy

CRT MR Reduction and Outcome

Pts with less moderate/severe residual MR after CRT had better survival, Improved EF and Symptoms

		ratio	limits		7 value
			Lower CL	Upper CL	
Baselin	e QRS	1.03	1.01	1.06	0.043
Pre-CF	RT LVEDD	0.95	0.93	0.97	< 0.0001
Baselin	e MR	0.82	0.72	0.94	0.004
MR cha mor	ange at 3 hths follow-up	1.27	1.04	1.55	0.019

 Table 4 Independent predictors of response to cardiac

0E% Confidence

Duraling

Verhaert D et al Circ CV Imaging 2012;5:21

Di Biase L et al Europace 2011;13:829

MR \rightarrow 10 to 20 % reduction at 6 months

Magnitude of benefit from CRT

ESC guidelines 2013; PREDICT CRT 2015

Candidates for CRT

Recommendations for cardiac resynchronization therapy implantation in **()** patients with heart failure

Recommendations	Class	Level
CRT is recommended for symptomatic patients with HF in SR with a QRS duration ≥150 ms and LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	T.	Α
CRT should be considered for symptomatic patients with HF in SR with a QRS duration of 130–149 ms and LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	Т	В
CRT should be considered for symptomatic patients with HF in SR with a QRS duration \geq 150 ms and non-LBBB QRS morphology and with LVEF \leq 35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	lla	В
CRT may be considered for symptomatic patients with HF in SR with a QRS duration of 130–149 ms and non-LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	llb	В
CRT is not recommended in patients with a QRS duration <130 ms who do not have an indication for pacing due to high degree AV block.	III	A

AF = atrial fibrillation; AV = atrio-ventricular; CRT = cardiac resynchronization therapy; HF = heart failure; HFrEF = heart failure with reduced ejection fraction; ICD = implantable cardioverter-defibrillator; LBBB = left bundle branch block; LVEF = left ventricular ejection fraction; NYHA= New York Heart Association; OMT= optimal medical therapy (class I recommended medical therapies for at least 3 months); QRS =Q, R, and S waves (combination of three of the graphical deflections); RV = right ventricular; SR = sinus rhythm.

Scar Tissue at the LV Lead Tip

Non responder

Clinical Response

n = 40

Responder

Reverse remodeling at 3 months

Bleeker G. Circulation 2006;113:969

Jansen A, Eur J Echocardiogr. 2008;9:483

Magnitude of benefit from CRT

- Absence of significant LV dyssynchrony
- LV lead mismatch (vs. site of latest mechanical activation)

Progression of the disease

Back a year later in severe heart failure

OUR CASE CRT is not a good option in this patient