Improving Risk Stratification in Asymptomatic Severe Aortic Stenosis

Valve Calcification by CT
I disclose the following financial relationships:

Consultant for Edwards, Abbott, Valtech
Receive grant/research support from Abbott
Advisory board of ACE Device Company
Paid speaker for Edwards, Abbott
Hemodynamic

- Mean gradient
- Peak transaortic velocity
- Aortic valve area
Outcome

OTTO Circulation 1997

Vmax < 3.0 m/s

3.0 - 4.0 m/s

> 4.0 m/s

Event-free survival

Time from enrollment (months)
Severe AS

<table>
<thead>
<tr>
<th></th>
<th>Sclerosis</th>
<th>Mild AS</th>
<th>Moderate AS</th>
<th>Severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak velocity, m/sec</td>
<td>< 2.5</td>
<td>2.5 - 3</td>
<td>3 - 4</td>
<td>> 4</td>
</tr>
<tr>
<td>Mean gradient, mm Hg</td>
<td>Normal</td>
<td>< 25</td>
<td>25 – 40 (ou 50)</td>
<td>40 (US) 50 (Europe)</td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>Normal</td>
<td>≥ 1.5</td>
<td>1 – 1.5</td>
<td>< 1 cm² < 0.6 cm²/m²</td>
</tr>
</tbody>
</table>
Natural History of Very Severe Aortic Stenosis

Raphael Rosenhek, MD; Robert Zilberszac; Michael Schemper, PhD; Martin Czerny, MD; Gerald Mundigler, MD; Senta Graf, MD; Jutta Bergler-Klein, MD; Michael Grimm, MD; Harald Gabriel, MD; Gerald Maurer, MD

Background—We sought to assess the outcome of asymptomatic patients with very severe aortic stenosis.

Methods and Results—We prospectively followed 116 consecutive asymptomatic patients (57 women; age, 67±16 years) with very severe isolated aortic stenosis defined by a peak aortic jet velocity (AV-Vel) ≥5.0 m/s (average AV-Vel, 5.37±0.35 m/s; valve area, 0.63±0.12 cm²). During a median follow-up of 41 months (interquartile range, 26 to 63 months), 96 events occurred (indication for aortic valve replacement, 90; cardiac deaths, 6). Event-free survival was 64%, 36%, 25%, 12%, and 3% at 1, 2, 3, 4, and 6 years, respectively. AV-Vel but not aortic valve area was shown to independently affect event-free survival. Patients with an AV-Vel ≥5.5 m/s had an event-free survival of 44%, 25%, 11%, and 4% at 1, 2, 3, and 4 years, respectively, compared with 76%, 43%, 33%, and 17% for patients with an AV-Vel between 5.0 and 5.5 m/s (P<0.0001). Six cardiac deaths occurred in previously asymptomatic patients (sudden death, 1; congestive heart failure, 4; myocardial infarction, 1). Patients with an initial AV-Vel ≥5.5 m/s had a higher likelihood (52%) of severe symptom onset (New York Heart Association or Canadian Cardiovascular Society class ≥II) than those with an AV-Vel between 5.0 and 5.5 m/s (27%; P=0.03).

Conclusions—Despite being asymptomatic, patients with very severe aortic stenosis have a poor prognosis with a high event rate and a risk of rapid functional deterioration. Early elective valve replacement surgery should therefore be considered in these patients. (Circulation. 2010;121:151-156.)
<table>
<thead>
<tr>
<th></th>
<th>Sclerosis</th>
<th>Mild AS</th>
<th>Moderate AS</th>
<th>Severe AS</th>
<th>Very Severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak velocity, m/sec</td>
<td>< 2.5</td>
<td>2.5 - 3</td>
<td>3 - 4</td>
<td>> 4</td>
<td>> 5.5</td>
</tr>
<tr>
<td>Mean gradient, mm Hg</td>
<td>Normal</td>
<td>< 25</td>
<td>25 – 40 (ou 50)</td>
<td>40 (US) 50 (Europe)</td>
<td></td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>Normal</td>
<td>≥ 1.5</td>
<td>1 – 1.5</td>
<td>< 1 cm²</td>
<td>< 0.6 cm²/m²</td>
</tr>
</tbody>
</table>
Aortic Valve Calcification

Leading process to Aortic Stenosis
Hemodynamic consequences

B Aortic-Valve Anatomy

Normal
Aortic sclerosis
Mild-to-moderate aortic stenosis
Severe aortic stenosis

C Doppler Aortic-Jet Velocity

Normal
Aortic sclerosis <2.5 m/sec
Mild-to-moderate aortic stenosis 2.5–4.0 m/sec
Severe aortic stenosis >4 m/sec

You know what? Echo is tough ...
The severity of aortic valve calcification is usually graded from the parasternal short-axis view.
What is the degree of aortic valve calcification for each of the 4 patients?
MG 22 mm Hg MG 22 mm Hg MG 50 mm Hg MG 35 mm Hg
Echocardiographic Evaluation of Aortic Valve Calcification

- None
- Mild: isolated spots
- Moderate: Multiples spots
- Severe: Large and diffuse calcifications

\[\kappa = 0.60 \]
Echocardiographic Evaluation of Aortic Valve Calcification

1. Subjective
2. Qualitative
3. Gain
4. Quality of images

Inaccurate
Aortic Valve Calcification (AVC)

CT is ideally suited to objectively and quantitatively assessed calcifications.
CT Scanner – Measurements of Calcifications

- Automated operator-independent image-processing software
- Calcification are defined as 4 adjacent pixels with density 130 Hounsfield units
- Radiologist affect the selected area to the coronary arteries, the aortic valve....
The Agatston Score

- For each region of interest, score = density score * area
- Total score: sum of score of each region of interest in all slices

Peak density score

<table>
<thead>
<tr>
<th>Hn</th>
<th>X Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>130-199</td>
<td>1</td>
</tr>
<tr>
<td>200-299</td>
<td>2</td>
</tr>
<tr>
<td>300-399</td>
<td>3</td>
</tr>
<tr>
<td>> 400</td>
<td>4</td>
</tr>
</tbody>
</table>

Region 1.
Area 1 = 15 mm²
Peak CT = 350 Hn
Score = 15 * 3 = 45

Region 2.
Area 1 = 30 mm²
Peak CT = 500 Hn
Score = 30 * 4 = 120
Anatomic validation for AVC

EBCT (score)

$\text{Weight calcium (mg)}$

$r=0.96, p < 0.0001$

30 valves specimen
Quantification AVC
EBCT (Agatston score)
Tissue digestion

Messika-Zeitoun Circulation 2004
Examples of degree of AVC

Mild AVC. Score = 200 AU

Moderate AVC. score = 800

Severe AVC. Score = 2000
Why do I need another imaging modality?

1. Diagnosis of AS severity
2. Prognosis of AS
Why do I need another imaging modality?

1. Diagnosis of AS severity
2. Prognosis of AS
When do I need another imaging modality?

- Poor echocardiographic windows
- Discrepancies between symptoms and echocardiographic measurements
- Discordant grading AVA / MPG
 - Low EF
 - Normal EF
Relationship between AVC and Hemodynamic Severity
AVA : AUC=0.86

AVAi : AUC=0.9

MPG: AUC=0.92

MPV : AUC=0.9
Thresholds

<table>
<thead>
<tr>
<th>Calcium Score</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>PPV, %</th>
<th>NPV, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>100</td>
<td>31</td>
<td>46</td>
<td>100</td>
</tr>
<tr>
<td>700</td>
<td>98</td>
<td>49</td>
<td>49</td>
<td>98</td>
</tr>
<tr>
<td>1000</td>
<td>94</td>
<td>65</td>
<td>55</td>
<td>94</td>
</tr>
<tr>
<td>1200</td>
<td>91</td>
<td>65</td>
<td>59</td>
<td>92</td>
</tr>
<tr>
<td>1651</td>
<td>82</td>
<td>80</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>2000</td>
<td>62</td>
<td>86</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>3000</td>
<td>57</td>
<td>91</td>
<td>74</td>
<td>72</td>
</tr>
</tbody>
</table>
Severe AS

<table>
<thead>
<tr>
<th></th>
<th>Sclerosis</th>
<th>Mild AS</th>
<th>Moderate AS</th>
<th>Severe AS</th>
<th>Very Severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak velocity, m/sec</td>
<td>< 2.5</td>
<td>2.5 - 3</td>
<td>3 - 4</td>
<td>> 4</td>
<td>> 5.5</td>
</tr>
<tr>
<td>Mean gradient, mm Hg</td>
<td>Normal</td>
<td>< 25</td>
<td>25 – 40 (ou 50)</td>
<td>40 (US) 50 (Europe)</td>
<td></td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>Normal</td>
<td>≥ 1.5</td>
<td>1 – 1.5</td>
<td>< 1 cm²</td>
<td>< 0.6 cm²/m²</td>
</tr>
<tr>
<td>Calcium score, AU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1650</td>
</tr>
</tbody>
</table>
Sex Differences in Aortic Valve Calcification Measured by Multidetector Computed Tomography in Aortic Stenosis

Shivani R. Aggarwal, MBBS*; Marie-Annick Clavel, DVM, PhD*; David Messika-Zeitoun, MD, PhD; Caroline Cueff, MD; Joseph Malouf, MD; Philip A. Araoz, MD; Rekha Mankad, MD; Hector Michelena, MD; Alec Vahanian, MD; Maurice Enriquez-Sarano, MD

Background—Aortic valve calcification (AVC) is the intrinsic mechanism of valvular obstruction leading to aortic stenosis (AS) and is measurable by multidetector computed tomography. The link between sex and AS is controversial and that with AVC is unknown.

Methods and Results—We prospectively performed multidetector computed tomography in 665 patients with AS (aortic valve area, 1.05±0.35 cm²; mean gradient, 39±19 mm Hg) to measure AVC and to assess the impact of sex on the AVC–AS severity link in men and women. AS severity was comparable between women and men (peak aortic jet velocity: 4.05±0.99 versus 3.93±0.91 m/s, P=0.11; aortic valve area index: 0.55±0.20 versus 0.56±0.18 cm²/m²; P=0.46). Conversely, AVC load was lower in women versus men (1703±1321 versus 2694±1628 arbitrary units; P<0.0001) even after adjustment for their smaller body surface area or aortic annular area (both P<0.0001). Thus, odds of high-AVC load were much greater in men than in women (odds ratio, 5.07; P<0.0001). Although AVC showed good associations with hemodynamic AS severity in men and women (all r>|0.67|; P<0.0001), for any level of AS severity measured by peak aortic jet velocity or aortic valve area index, AVC load, absolute or indexed, was higher in men versus women (all P≤0.01).

Conclusions—In this large AS population, women incurred similar AS severity than men for lower AVC loads, even after indexing for their smaller body size. Hence, the relationship between valvular calcification process and AS severity differs in women and men, warranting further pathophysiological inquiry. For AS severity diagnostic purposes, interpretation of AVC load should be different in men and in women. (Circ Cardiovasc Imaging. 2013;6:40-47.)

Key Words: aortic valve calcification ■ aortic valve stenosis ■ Doppler echocardiography ■ multidetector computed tomography ■ sex differences
Sex Differences in Aortic Valve Calcification Measured by Multidetector Computed Tomography in Aortic Stenosis

![Graph showing sex differences in aortic valve calcification.]

- Men: $r=0.70; \ p<0.0001$
- Women: $r=0.77; \ p<0.0001$

$P_i < 0.0001$
Severe AS

<table>
<thead>
<tr>
<th></th>
<th>Sclerosis</th>
<th>Mild AS</th>
<th>Moderate AS</th>
<th>Severe AS</th>
<th>Very Severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak velocity, m/sec</td>
<td>< 2.5</td>
<td>2.5 - 3</td>
<td>3 - 4</td>
<td>> 4</td>
<td>> 5.5</td>
</tr>
<tr>
<td>Mean gradient, mm Hg</td>
<td>Normal</td>
<td>< 25</td>
<td>25 – 40 (or 50)</td>
<td>40 (US)</td>
<td>50 (Europe)</td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>Normal</td>
<td>≥ 1.5</td>
<td>1 – 1.5</td>
<td>< 1 cm²</td>
<td>< 0.6 cm²/m²</td>
</tr>
<tr>
<td>Calcium score, AU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Female 1250</td>
</tr>
</tbody>
</table>
When do I need another imaging modality?

- Poor echocardiographic windows
- Discrepancies between symptoms and echocardiographic measurements
- Discordant grading AVA / MPG
 - Low EF
 - Normal EF
Low gradient / Low EF

PUSH
Dobutamine Echocardiography

True Severe AS

Low Flow

High Flow

AVA

ΔP

Surgery /TAVI

Pseudo Severe AS

Low Flow

High Flow

Medical therapy
Low Gradient – Low Output
Low EF

Dobutamine up to 20 μg/kg/min

Not always easy

Non conclusive

Monin Circulation 2003; 108: 319-324
47 patients with Low EF

- EF ≤ 40%
 - MG > 40 mmHg
 - AVA < 1 cm²
 - Severe AS
 - 24 patients
 - MG ≤ 40 mmHg
 - AVA < 1 cm²
 - Low gradient / Low Output
 - 20 patients
 - MG ≤ 40mmHg
 - AVA ≥ 1 cm²
 - Non Severe AS
 - 5 patients

- Severe AS
 - 24 patients

- Non Conclusive AS
 - 2 patient

- Pseudo Severe AS
 - 4 patients

Cueff Heart 2011
When do I need another imaging modality?

- Poor echocardiographic windows

- Discrepancies between symptoms and echocardiographic measurements

- Discordant grading AVA / MPG
 - Low EF
 - Normal EF
Discordant grading – Normal EF

<table>
<thead>
<tr>
<th></th>
<th>Sclerosis</th>
<th>Mild AS</th>
<th>Moderate AS</th>
<th>Severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak velocity, m/sec</td>
<td>< 2.5</td>
<td>2.5 - 3</td>
<td>< 4</td>
<td>> 4</td>
</tr>
<tr>
<td>Mean gradient, mm Hg</td>
<td>Normal</td>
<td>< 25</td>
<td>< 40</td>
<td>40 (US) 50 (Europe)</td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>Normal</td>
<td>≥ 1.5</td>
<td>1 – 1.5</td>
<td>< 1</td>
</tr>
</tbody>
</table>
Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis

Jan Minners*, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, and Nikolaus Jander
Outcome of Patients with PLF

512 Patients with LVEF ≥ 50%

Percentage of Patients Treated Surgically

65 %

47 %

NF: Normal Flow: SVI>35 (65%)

PLF: Paradoxical Low Flow: SVI≤35

Follow-up (years)

P < 0.001

NF: Normal Flow: SVI>35 (65%)
PLF: Paradoxical Low Flow: SVI≤35
Clinical Outcome in Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed Aortic Stenosis Grading Classification
Severe AS?

High flow High gradient
G > 40 mm Hg
Flow ≥ 35 ml/m²

High flow low gradient
G < 40 mm Hg
Flow ≥ 35 ml/m²

Low flow High gradient
G > 40 mm Hg
Flow < 35 ml/m²

Low flow low gradient
G < 40 mm Hg
Flow < 35 ml/m²
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading

New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Marie-Annick Clavel, DVM, PhD,* David Messika-Zeitoun, MD, PhD,†† Philippe Pibarot, DVM, PhD,§ Shivani R. Aggarwal, MBBS,* Joseph Malouf, MD,* Phillip A. Araoz, MD,* Hector I. Michanela, MD,* Caroline Cueff, MD,† Eric Larose, MD, MSc,‡ Romain Capoulade, MSc,§ Alec Vahanian, MD,‡‡ Maurice Enriquez-Sarano, MD*

Rochester, Minnesota; Paris, France; and Quebec City, Quebec, Canada

Objectives

With concomitant Doppler echocardiography and multidetector computed tomography (MDCT) measuring aortic valve calcification (AVC) load, this study aimed at defining: 1) independent physiological/structural determinants of aortic valve area (AVA)/mean gradient (MG) relationship; 2) AVC thresholds best associated with severe aortic stenosis (AS); and 3) whether, in AS with discordant MG, severe calcified aortic valve disease is generally detected.

Background

Aortic stenosis with discordant markers of severity, AVA in severe range but low MG, is a conundrum, unresolved by outcome studies.

Methods

Patients (n = 464) with normal left ventricular ejection fraction AS underwent Doppler echocardiography and AVC measurement by MDCT. On the basis of AVA-indexed-to-body surface area (AVAi) and MG, patients were categorized as concordant severity grading (CG) with moderate AS (AVAi > 0.6 cm²/m², MG < 40 mm Hg), severe AS (AVAi ≤ 0.6 cm²/m², MG ≥ 40 mm Hg), discordant-severity-grading (DG) with low-MG (AVAi ≤ 0.6 cm²/m², MG < 40 mm Hg), or high-MG (AVAi > 0.6 cm²/m², MG ≥ 40 mm Hg).

Results

The MG (discordant in 29%) was strongly determined by AVA and flow but also independently and strongly influenced by AVC-load (p < 0.0001) and systemic arterial compliance (p < 0.0001). The AVC-load (median [interquartile range]) was similar within patients with DG (low-MG: 1,619 [965 to 2,528] arbitrary units [AU]; high-MG: 1,736 [1,209 to 2,894] AU; p = 0.49), higher than CG-moderate-AS (861 [427 to 1,519] AU; p < 0.0001) but lower than CG-severe-AS (2,931 [1,924 to 4,292] AU; p < 0.0001). The AVC-load thresholds separating severe/moderate AS were defined in CG-AS with normal flow (stroke-volume-index > 35 ml/m²). The AVC-load, absolute or indexed, identified severe AS accurately (area under the curve ≥ 0.89, sensitivity ≥ 86%, specificity ≥ 79%) in men and women. Upon application of these criteria to DG-low MG, at least one-half of the patients were identified as severe calcified aortic valve disease, irrespective of flow.

Conclusions

Among patients with AS, MG is often discordant from AVA and is determined by multiple factors, valvular (AVC) and non-valvular (arterial compliance) independently of flow. The AVC-load by MDCT, strongly associated with AS severity, allows diagnosis of severe calcified aortic valve disease. At least one-half of the patients with discordant low gradient present with heavy AVC-load reflective of severe calcified aortic valve disease, emphasizing the clinical yield of AVC quantification by MDCT to diagnose and manage these complex patients.

(J Am Coll Cardiol 2013;62:2329–38) © 2013 by the American College of Cardiology Foundation
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading
New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Patients with at least moderate AS and normal EF
N=646

Concordant grading (AVA and Mean gradient)
N=460

Moderate AS
N=174

Severe AS
N=286

Discordant grading
N=186

AVA < 1 cm² and MG > 40 mm Hg
N=14

AVA < 1 cm² and MG < 40 mm Hg
N=172
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading
New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Patients with at least moderate AS and normal EF
N=646

Concordant grading (AVA and Mean gradient)
N=460

Discordant grading
N=186

Moderate AS
N=174

Severe AS
N=286

AVA < 1 cm² and MG > 40 mm Hg
N=14

AVA < 1 cm² and MG < 40 mm Hg
N=172
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading

New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Patients with at least moderate AS and normal EF
N=646

Concordant grading (AVA and Mean gradient)
N=460

Moderate AS
N=174

Severe AS
N=286

Discordant grading
N=186

AVA < 1 cm² and MG > 40 mm Hg
N=14

AVA < 1 cm² and MG < 40 mm Hg
N=172
Patients with at least moderate AS and normal EF
N=646

Concordant grading (AVA and Mean gradient)
N=460

Moderate AS
N=174

Severe AS
N=286

Discordant grading
N=186

AVA > 1 cm² and MG > 40 mm Hg
N=14

AVA < 1 cm² and MG < 40 mm Hg
N=172
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading

New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Patients with at least moderate AS and normal EF
N=646

Concordant grading (AVA and Mean gradient)
N=460

Moderate AS
N=174

Severe AS
N=286

Discordant grading
N=186

AVA > 1 cm² and MG > 40 mm Hg
N=14

AVA < 1 cm² and MG < 40 mm Hg
N=172

Low flow
N=25
Normal flow
N=147

Low flow 5%
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading

New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

<table>
<thead>
<tr>
<th>AVC showing severe AS, n (%)</th>
<th>Patients with Concordant Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute AVC</td>
<td>Moderate AS (n=174)</td>
</tr>
<tr>
<td></td>
<td>Severe AS (n=286)</td>
</tr>
<tr>
<td></td>
<td>28 (16)</td>
</tr>
<tr>
<td></td>
<td>251 (88)</td>
</tr>
<tr>
<td>AVCd</td>
<td>33 (19)</td>
</tr>
<tr>
<td></td>
<td>260 (91)</td>
</tr>
</tbody>
</table>
The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading

New Insights From Combined Doppler Echocardiographic and Computed Tomographic Study

Half of patients with paradoxical low gradient AS have severe AS based on measurement of Aortic valve calcification

<table>
<thead>
<tr>
<th>Absolute AVC</th>
<th>Best Cut-off</th>
<th>Patients with Discordant Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High MG (n=14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (71)</td>
</tr>
</tbody>
</table>

| AVCd | Best Cut-off | 10 (71) | 91 (53) |

Irrespective of the flow +++
Look for
- Small body surface area
- Errors measurements
- Hypertension

Gradient < 40 mm Hg
Peak velocity < 4 m/sec
AVA < 1cm²

Gradient < 40 mm Hg
Peak velocity < 4 m/sec
AVA > 1cm²

Gradient > 40 mm Hg
Peak velocity > 4 m/sec
AVA < 1cm²

Gradient > 40 mm Hg
Peak velocity > 4 m/sec
AVA > 1cm²

Dobutamine and Calcium scoring

Normal SV
Low SV
Moderate AS
Pseudo-severe AS
Severe AS
Severe AS
Pseudo-severe AS

Reduced Fraction

Jeroen J. Bax1*, Victoria Delgado1, Vinayak Bapat2, Helmut Baumgartner3, Jean P. Collet4, Raimund Erbel5, Christian Hamm6, Arie P. Kappetein7, Jonathon Leipsic8, Martin B. Leon9, Philip MacCarthy10, Nicolo Piazza11,12, Philippe Pibarot13, William C. Roberts14, Josep Rodés-Cabau15, Patrick W. Serruys7, Martyn Thomas2, Alec Vahanian16, John Webb8, Jose Luis Zamorano17, and Stephan Windecker18

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Diagram illustrating patient selection and treatment strategy for transcatheter aortic valve implantation.}
\end{figure}

- **Low-flow, low-gradient severe AS**
 - AVA <1.0 cm\(^2\) (<0.6 cm\(^2\)/m\(^2\))
 - LV stroke volume index <35 mL/m\(^2\)
 - Mean gradient <40 mmHg

 - LVEF <50%:
 - Classical low-flow low-gradient AS
 - AVA >1.0 cm\(^2\)
 - Mean gradient <40 mmHg
 - Pseudo-severe AS
 - AVA <1.0 cm\(^2\)
 - Mean gradient >40 mmHg
 - True severe AS

 - LVEF \geq 50%:
 - Paradoxical low-flow low-gradient AS
 - Examine erroneous measurement of gradients and LVOT diameter
 - Indexed AVA (exclude small body size as confounding factor)
 - Evaluate global afterload (valvulo-arterial impedance)

- **MDCT**
 - Aortic valve calcium score
 - Men: \geq 2065 AU
 - Women: \geq 1275 AU
Why do I need another imaging modality?

1. Diagnosis of AS severity

2. Prognosis of AS
Determinants of the Progression of Aortic Valve Calcification

- Epidemiology of Coronary Artery Calcification Study
- Ongoing population-based study part of the Rochester Family Heart study.
- Baseline extensive evaluation of cardiovascular risk factors and EBCT.

Olmsted County, MN
Prevalence of Aortic Valve Calcifications

- Score: 54 ± 173 (0 to 1944)

Baseline characteristics
- 262 participants
- 68 ± 5 years
- Male: 43%
- Body mass index: 29 ± 5 kg/m2
- History of smoking: 124 (47%)
- Hypertension: 179 (68%)
- Diabetes under medical therapy: 25 (10%)
- History of CAD: 25 (10%)
- Total cholesterol: 210 ± 34 mg/dL
- LDL-cholesterol: 122 ± 29 mg/dL
Progression of Aortic Valve Calcification

Baseline

CVA

NO

N=192

YES

N=70

Follow-up

Acquisition of de novo de AVC

N=173

N=19

N=15

N=55
<table>
<thead>
<tr>
<th></th>
<th>No AVC at follow-up (n=173)</th>
<th>Acquisition of AVC (n=19)</th>
<th>Established AVC (n=70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>67±5</td>
<td>67±4</td>
<td>70±5</td>
</tr>
<tr>
<td>Male gender, %</td>
<td>40</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>28±5</td>
<td>28±5</td>
<td>30±6</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>132±17</td>
<td>140±22</td>
<td>138±20</td>
</tr>
<tr>
<td>Pack year</td>
<td>12±19</td>
<td>13±17</td>
<td>18±28</td>
</tr>
<tr>
<td>History of hypertension, %</td>
<td>66</td>
<td>58</td>
<td>77</td>
</tr>
<tr>
<td>Diabetes under medical therapy, %</td>
<td>6</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Glucose, mg/L</td>
<td>98±24</td>
<td>103±27</td>
<td>109±40</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>209±33</td>
<td>235±39</td>
<td>205±35</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td>121±27</td>
<td>141±31</td>
<td>120±31</td>
</tr>
<tr>
<td>Fibrinogene, mg/dL</td>
<td>318±75</td>
<td>351±65</td>
<td>340±93</td>
</tr>
<tr>
<td>Baseline CAC score</td>
<td>223±503</td>
<td>668±940</td>
<td>331±481</td>
</tr>
<tr>
<td>Follow-up CAC score</td>
<td>328±637</td>
<td>966±1214</td>
<td>513±610</td>
</tr>
<tr>
<td>CAC annualized progression rate</td>
<td>29±47</td>
<td>78±87</td>
<td>53±58</td>
</tr>
<tr>
<td>AVC annualized progression rate</td>
<td>0±1</td>
<td>9±8</td>
<td>39±53</td>
</tr>
</tbody>
</table>
Progression faster with AVC Load

AVC, Score

- No AVC baseline
- Presence of AVC at baseline
- 1er tercile
- 2ème tercile
- 3ème tercile

Baseline vs Follow-up

P <0.01
Predictors of aortic progression

LDL-cholesterol was the only independent determinant of acquisition of aortic calcification and aortic score of progression of aortic calcification in participants with established calcifications.
Haemodynamic and anatomic progression of aortic stenosis

Virginia Nguyen,1,2,3 Claire Cimadevilla,1,2 Candice Estellat,4 Isabelle Codogno,1
Virginie Huart,5 Joelle Benessiano,5 Xavier Duval,6 Philippe Pibarot,7
Marie Annick Clavel,8 Maurice Enriquez-Sarano,8 Alec Vahanian,1,2,3
David Messika-Zeitoun1,2,3

ABSTRACT

Background Aortic valve stenosis (AS) is a progressive disease, but the impact of baseline AS haemodynamic or anatomic severity on AS progression remains unclear.

Methods In 149 patients (104 mild AS, 36 moderate AS and 9 severe AS) enrolled in 2 ongoing prospective cohorts (COFRASA/GENERAC), we evaluated AS haemodynamic severity at baseline and yearly, thereafter, using echocardiography (mean pressure gradient (MPG)) and AS anatomic severity using CT (degree of aortic valve calcification (AVC)).

Results After a mean follow-up of 2.9±1.0 years, mean MGP increased from 22±11 to 30±16 mm Hg (+3±3 mm Hg/year), and mean AVC from 1108±891 to 1640±1251 AU (arbitrary units) (+188±176 AU/year). Progression of AS was strongly related to baseline haemodynamic severity (+2±3 mm Hg/year in mild AS, +4±3 mm Hg/year in moderate AS and +5±5 mm Hg/year in severe AS (p=0.01)), and baseline haemodynamic severity was an independent predictor of haemodynamic progression (p=0.0003). Annualised haemodynamic and anatomic progression rates were significantly correlated (r=0.55, p<0.0001), but AVC progression rate was also significantly associated with baseline haemodynamic severity (+141±133 AU/year in mild AS, +279±189 AU/year in moderate AS and +361±293 AU/year in severe AS, p<0.0001), and both baseline MPG and baseline AVC were independent determinants of AVC progression (p<0.0001).

Conclusions AS progressed faster with increasing haemodynamic or anatomic severity. Our results suggest that a medical strategy aimed at preventing AVC progression may be useful in all subsets of patients with AS including those with severe AS and support the recommended closer follow-up of patients with AS as AS can progress faster.
Progression of Aortic Valve Calcification in Aortic Stenosis - Impact of Severity. The COFRASA - GENERAC Study

Mean pressure gradient increase, mm Hg/year

- Mild AS
- Moderate AS
- Severe AS

P=0.01
Progression of Aortic Valve Calcification in Aortic Stenosis - Impact of Severity. The COFRASA - GENERAC Study

Mean aortic valve calcification increase, AU/year

Mild AS

Moderate AS

Severe AS

P<0.0001
Progression of Aortic Valve Calcification in Aortic Stenosis - Impact of Severity. The COFRASA - GENERAC Study

Mean aortic valve calcification increase, mm AU/year

Baseline aortic valve calcification, AU
Prognostic value of AVC
Echocardiographic assessment

Event free survival (%) No or mild calcification
Moderate or severe calcification

P<0.0001

Rosenhek NEJM 2000
Prognostic value of AVC CT assessment

AVC and hemodynamic severity provide complementary prognostic information

Event free survival (%) vs Years

AVC < 500 AU

AVC ≥ 500 AU

P=0.0002
Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis

Results of an International Registry Study

Marie-Annick Clavel, DVM, PrD,* Philippe Pibarat, DVM, PrD,† David Messika-Zeitoun, MD, PrD,*‡§ Romain Capoulade, PrD,† Joseph Malouf, MD,* Shivani Aggarval, MBBS,* Phillip A. Araoz, MD,* Hector I. Michelena, MD,* Caroline Cueff, MD,† Eric Larose, MD, MSc,† Jordan D. Miller, PrD,* Alec Vahanian, MD,*† Maurice Enriquez-Sarano, MD*

ABSTRACT

BACKGROUND Aortic valve calcification (AVC) load measures lesion severity in aortic stenosis (AS) and is useful for diagnostic purposes. Whether AVC predicts survival after diagnosis, independent of clinical and Doppler echocardiographic AS characteristics, has not been studied.

OBJECTIVES This study evaluated the impact of AVC load, absolute and relative to aortic annulus size (AVCdensity), on overall mortality in patients with AS under conservative treatment and without regard to treatment.

METHODS In 3 academic centers, we enrolled 794 patients (mean age, 73 ± 12 years; 274 women) diagnosed with AS by Doppler echocardiography who underwent multidetector computed tomography (MDCT) within the same episode of care. Absolute AVC load and AVCdensity (ratio of absolute AVC to cross-sectional area of aortic annulus) were measured, and severe AVC was separately defined in men and women.

RESULTS During follow-up, there were 440 aortic valve implantations (AVIs) and 194 deaths (115 under medical treatment). Univariate analysis showed strong association of absolute AVC and AVCdensity with survival (both, p < 0.0001) with a spline curve analysis pattern of threshold and plateau of risk. After adjustment for age, sex, coronary artery disease, diabetes, symptoms, AS severity on hemodynamic assessment, and LV ejection fraction, severe absolute AVC (adjusted hazard ratio [HR]: 1.75; 95% confidence interval [CI]: 1.04 to 2.92; p = 0.03) or severe AVCdensity (adjusted HR: 2.44; 95% CI: 1.37 to 4.37; p = 0.002) independently predicted mortality under medical treatment, with additive model predictive value (all, p = 0.04) and a net reclassification index of 12.5% (p = 0.04). Severe absolute AVC (adjusted HR: 1.71; 95% CI: 1.12 to 2.62; p = 0.01) and severe AVCdensity (adjusted HR: 2.22; 95% CI: 1.40 to 3.52; p = 0.001) also independently predicted overall mortality, even with adjustment for time-dependent AVI.

CONCLUSIONS This large-scale, multicenter outcomes study of quantitative Doppler echocardiographic and MDCT assessment of AS shows that measuring AVC load provides incremental prognostic value for survival beyond clinical and Doppler echocardiographic assessment. Severe AVC independently predicts excess mortality after AS diagnosis, which is greatly alleviated by AVI. Thus, measurement of AVC by MDCT should be considered for not only diagnostic but also risk-stratification purposes in patients with AS. (J Am Coll Cardiol 2014;64:1202-13) © 2014 by the American College of Cardiology Foundation.
Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis

Results of an International Registry Study

Marie-Annick Clavel, DVM, PhD,* Philippe Pibarat, DVM, PhD,† David Messika-Zeitoun, MD, PhD,‡§ Romain Capoulade, PhD,† Joseph Malouf, MD,* Shivani Aggarval, MBBS,* Phillip A. Araoz, MD,* Hector I. Michelenia, MD,* Caroline Cueff, MD,† Eric Larose, MD, MSc,† Jordan D. Miller, PhD,* Alec Vahanian, MD,‡§ Maurice Enriquez-Sarano, MD*

A

B
Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis

Results of an International Registry Study

Marie-Annick Clavel, DVM, PhD,* Philippe Pibarot, DVM, PhD,† David Messika-Zeitoun, MD, PhD,‡§
Romain Capoulade, PhD,† Joseph Malouf, MD,* Shivani Aggarval, MBBS,* Phillip A. Araoz, MD,*
Hector I. Michela, MD,* Caroline Cuff, MD,† Eric Larose, MD, MSc,† Jordan D. Miller, PhD,* Alec Vahanian, MD,‡§
Maurice Enriquez-Sarano, MD*
Impact of Aortic Valve Calcification, as Measured by MDCT, on Survival in Patients With Aortic Stenosis

Results of an International Registry Study

Marie-Annick Clavel, DVM, PhD,* Philippe Pibarot, DVM, PhD,† David Messika-Zeitoun, MD, PhD,++
Romain Capoulade, PhD,† Joseph Malouf, MD,* Shivani Aggarval, MBBS,* Phillip A. Araoz, MD,*
Hector I. Michelena, MD,* Caroline Cuffé, MD,† Eric Larose, MD, MSc,† Jordan D. Miller, PhD,* Alec Vahanian, MD,‡§
Maurice Enriquez-Sarano, MD*
AVC and Hemodynamic Severity are Not Equivalent

R = -0.79, p < 0.0001

R = 0.86, p < 0.0001

Messika-Zeitoun Circulation 2004
Indications for aortic valve replacement in asymptomatic aortic stenosis

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVR is indicated in asymptomatic patients with severe AS and systolic LV dysfunction (LVEF < 50%) not due to another cause.</th>
<th>I</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVR is indicated in asymptomatic patients with severe AS and abnormal exercise test showing symptoms on exercise clearly related to AS.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>AVR should be considered in asymptomatic patients with severe AS and abnormal exercise test showing fall in blood pressure below baseline.</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>
| AVR should be considered in asymptomatic patients with severe AS and none of the above mentioned exercise test abnormalities, if surgical risk is low, and one or more of the following findings is present:
 - very severe AS defined by a peak transvalvular velocity > 5.5 m/s,
 - **severe valve calcification** and a rate of peak of transvalvular velocity progression ≥ 0.3 m/s per year. | IIa | C |
| AVR may be considered in asymptomatic patients with severe AS, normal EF and none of the above mentioned exercise test abnormalities, if surgical risk is low, and one or more of the following findings is present:
 - markedly elevated natriuretic peptide levels confirmed by repeated measurements without other explanations,
 - increase of mean pressure gradient with exercise by > 20 mmHg,
 - excessive LV hypertrophy in the absence of hypertension. | IIb | C |
1. Aortic valve calcification can be objectively and quantitatively assessed using CT
Conclusion

2. Degree of aortic valve calcification is highly correlated to AS hemodynamic severity and calcium scoring can be considered as an additional method to assess AS severity in difficult subset of patients

- Poor echogenicity
- Discordance between echo and symptoms
- Low gradient – low ejection fraction
- Discording grading and normal EF
Conclusion

3. Aortic valve calcification progressively increased
 ● Progression is independent of CV risk-factors
 ● Aortic valve calcification (and AS hemodynamic severity) increase faster with baseline AS severity and baseline calcium load

4. Aortic valve calcification provide important prognostic information but thresholds need to be further defined
Thank you